Table of Contents

The BMBF Research Focus “Plastics in the Environment – Sources · Sinks · Solutions” 2

Research Sites of the Joint Research Projects 4

Joint Research Projects

<table>
<thead>
<tr>
<th>Project</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAU</td>
<td>6</td>
</tr>
<tr>
<td>TextileMission</td>
<td>14</td>
</tr>
<tr>
<td>ENSURE</td>
<td>18</td>
</tr>
<tr>
<td>VerPlaPoS</td>
<td>22</td>
</tr>
<tr>
<td>PlastikBudget</td>
<td>28</td>
</tr>
<tr>
<td>PLASTRAT</td>
<td>30</td>
</tr>
<tr>
<td>RUSEKU</td>
<td>34</td>
</tr>
<tr>
<td>SubµTrack</td>
<td>38</td>
</tr>
<tr>
<td>ResolVe</td>
<td>42</td>
</tr>
<tr>
<td>solvoPET</td>
<td>46</td>
</tr>
<tr>
<td>MaReK</td>
<td>50</td>
</tr>
<tr>
<td>KuWert</td>
<td>54</td>
</tr>
<tr>
<td>REPLAWA</td>
<td>58</td>
</tr>
<tr>
<td>EmiStop</td>
<td>64</td>
</tr>
<tr>
<td>MikroPlaTaS</td>
<td>70</td>
</tr>
<tr>
<td>MicBin</td>
<td>74</td>
</tr>
<tr>
<td>PLAWES</td>
<td>78</td>
</tr>
<tr>
<td>MicroCatch_Balt</td>
<td>82</td>
</tr>
</tbody>
</table>

Accompanying Scientific Research Project (PlastikNet) 85

Contact Details of the Project Partners 87

Imprint 100
Plastics in the environment are a global problem and the evidence for this is hard to miss: huge waste deposits are seen in the oceans even in remote areas of the Arctic, plastic particles are found in the stomachs of fish and seabirds, and plastics of all sizes and shapes are clearly visible on almost any beach around the world.

Despite a range of activities and approaches, our knowledge of the full extent of plastic pollution is still limited: there is not enough validated knowledge on the origins of plastics in the ocean, their behaviour in oceans, inland waters and soils, and how they could affect animals and humans.

Germany’s Federal Ministry for Education and Research (Bundesministerium für Bildung und Forschung – BMBF) addresses this issue with its current research focus, an initiative called “Plastics in the Environment – Sources • Sinks • Solutions”. The BMBF is thus supporting the transition to a resource and environmentally friendly economy, which is at the heart of the flagship initiative Green Economy within the BMBF-framework programme “Research for Sustainable Development” (FONA³: www.fona.de/en/). With this research focus, the BMBF expands on work conducted in previous funding measures, e.g.: the international funding programme investigating microplastics in the oceans (part of JPI OCEANS), the ongoing joint research project “Microplastics in the water cycle” (MiWa) (part of the funding priority Sustainable Water Management), as well as the Social-ecological Junior Research Group PlastX working in this area.

The interdisciplinary nature of the research focus will enable a better understanding of the environmental impacts of plastic waste from river basins all the way to the oceans. The aim of the research is a first and comprehensive scientific assessment of the problem of plastic waste and to fill in existing knowledge gaps. In addition, solutions for reducing the emission of plastics into the environment are identified and implemented. For this purpose, the entire value chain of plastics, from production and use to disposal, is examined in order to identify opportunities for improvement and options for action, especially in an international context.
The spectrum of topics covered by this research focus ranges from the improvement of certain plastic materials with regard to their environmentally compatible degradability, the investigation of entry points into water bodies and the analysis of possible toxic effects on aquatic organisms to strengthening the environmental awareness of consumers. As main end-users and implementers of innovations, companies are involved in the development and realization of research projects right from the beginning.

In the period of 2017–2021, a total of 18 joint research projects and an accompanying scientific project will be funded with around €35 million. More than 100 institutions from science, industry, civil society, and public administration are involved in what is currently the world’s largest research focus in the field of the effects of plastic on the environment. The research projects can be structured into five thematic areas, which are aligned along the entire lifecycle of plastics:

1. Green Economy
2. Consumption
3. Recycling
4. Limnic Systems
5. Seas and oceans

This general outline of the research projects shows how diverse and far-reaching the impacts of the plastic problem are and the variety of areas in research, business and society that are affected.

In order to address the various aspects in a targeted manner, approaches are needed in which research institutions cooperate with actors from business, civil society and administration. Following that, other departments and federal authorities can also be supported in developing strategies and measures for a more sustainable use of plastics. To promote the knowledge exchange and networking between the projects as well as to support the use and communication of research results, the accompanying project PlastikNet was established. Furthermore, a Steering Committee and an Advisory Board are involved in the implementation of the research focus.

The Steering Committee serves the networking between the joint research projects as well as the discussion of general questions. Cross-cutting issues are defined, at which all interested joint research projects work together in the course of the research focus, e.g. in workshops. The six preliminary cross-cutting issues are:

1. Methods for sampling, sample preparation and analysis (incl. reference materials)
2. Evaluation methods of possible effects of plastics on the environment (incl. toxicology)
3. Terms & definitions
4. Social and political dimensions
5. Modelling (incl. life cycle assessment and data management)
6. Recycling / product design

In addition, joint activities are planned for the use and practical implementation of the project results and for public relations work. The Steering Committee is composed of the coordinators of all 18 joint research projects. Representatives of the BMBF, the project management agency and PlastikNet also take part in the semi-annual meetings.

The Advisory Board is organised under the leadership of the BMBF and includes important actors from the federal government, state governments, local authorities, industry, associations and civil society. The task of the Advisory Board is to link scientists from the research focus with stakeholders from industry, politics, society and administration as well as to disseminate the results. The Board thus serves on the one hand to multiply the results, i.e. transfer them to relevant institutions and political processes, and on the other hand, to inform the research projects with developments from practice.
Research Sites of the Joint Research Projects

Thematic area GREEN ECONOMY

| RAU | Empirical studies on tire abrasion
Identification of potential inputs through sampling road runoff, road sweepings and air particles at various locations in Berlin
Coordination: Prof. Dr.-Ing. Matthias Barjenbruch, Technical University of Berlin |
| --- | --- |
| TextileMission | Conducting household laundry and wear tests
Particle quantification and laboratory wastewater treatment tests
Coordination: Nicole Espey, Federal Association of the German Sporting Goods Industry (BSI) e.V., Bonn |

Thematic area CONSUMPTION

| VerPlaPoS | Living lab for consumer decisions
Coordination: Dr. Thomas Decker, Stadt Straubing |
| --- | --- |
| PlastikBudget | Development of plastic emission budget and LCA for plastic emission governance (Germany)
Coordination: Jürgen Bertling, Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT |

Thematic area RECYCLING

| ResolVe | Laboratory testing
Pilot plant
Coordination: Dr. Hannes Kerschbaumer, INEOS Styrolution Group GmbH, Frankfurt am Main |
| --- | --- |
| KuWert | On-site analyses and workshops
On-site analyses and workshops
Coordination: Dipl.-Ing. Christoph Rasewsky, TECHNOLOG Service GmbH, Hamburg |
| MaReK | Pilot plant (sorting machine)
Environmental impact assessments
Coordination: Prof. Dr.-Ing. Claus Lang-Koetz und Prof. Dr.-Ing. Jörg Woidasky, Pforzheim University, Institute of Industrial Ecology |
| solvoPET | Solvolysis in the pilot plant
Coordination: Dipl.-Kfm. Carsten Eichert, RITTEC Umwelttechnik GmbH, Lüneburg |

Thematic area LIMNIC SYSTEMS

| RUSEKU | Laboratory infrastructure
Degradation plants
Running water simulation system and lysimeter
Laboratory infrastructure/pilot plant
Laser process plants/analytics
Infrastructure/calculation capacities for simulations
Sampling strategies in the wastewater system
Coordination: Dr. Ulrike Braun, Federal Institute for Materials Research and Testing (BAM), Berlin |
| --- | --- |
| SubyTrack | Analyses for the entry of microplastic from combined sewer relief systems and rainwater overflows
Coordination: Prof. Dr. Jörg E. Drewes, Technical University of Munich |
| PLASTRAT | Experiments on the analysis and elimination of microplastic on waste water treatment plants
Analysis of the entry of microplastic from rain relief systems
Investigations on combined sewer relief systems
Coordination: Prof. Dr.-Ing. Christian Schaum, Bundeswehr University Munich |

Thematic area SEAS AND OCEANS

| PLAWES | Modelling and cross-system consideration of microplastic contamination in the Weser-Wadden Sea National Park system
Coordination: Prof. Dr. Christian Laforsch, University of Bayreuth |
| --- | --- |
| MicroCatch_Balt | Sampling and investigation of the Warnow river basin for sinks and sources of microplastic
Coordination: PD Dr. Matthias Labrenz, Leibniz Institute for Baltic Sea Research, Warnemünde |
Tire Abrasion in the Environment

Short description
Plastics in the environment are an increasingly serious challenge. As macroplastics deteriorate, such as through tire abrasion, the resulting microplastics can enter the aquatic environment through a variety of entry points. As vehicle traffic increases, there is an inevitable increase in microplastics from worn tires ending up in the environment. The amount of tire abrasion and the resulting microplastics entering the aquatic environment via road runoff have not yet been researched.

The joint research project RAU seeks to address this and will comprehensively describe tire particles throughout the useful service life of tires, closing the knowledge gaps on where particle loss occurs over the entire life cycle. The goal is to identify and assess the entry points of tire materials into the aquatic environment and to develop reduction measures. RAU will then verify selected measures for reducing the emission of tire material into the aquatic environment. On the basis of various influencing factors, an evaluation matrix will be developed for deriving the most suitable measures to reduce tire abrasion in different locations.

Key areas of work
» Development of a sampling basket for fractional sampling of individual rain events
» Analytical evaluation of environmental samples for tire abrasion
» Measurement of abrasion, quantification of subsets and subsequent qualitative examination
» Further development of the pollution load simulation
» Optimise the street cleaning
Work packages

WP 1.1
Analytical concept

Contact person
Dr. Jens Reiber, WESSLING GmbH, Oststraße 6, 48341 Altenberge, e-mail: jens.reiber@wessling.de

Project partners
TUB FG Siwawi, Continental, GKD

Short description
The goal is to develop, implement and evaluate analysis concepts including chemical and physical methods to identify and quantify tire abrasion particles in road runoff, road sweepings and as airborne particles. The sample preparation of aqueous and solid samples is particularly important. Due to the different compositions, the analysis concept should allow for determining the quantities and emissions into the environment, both in total and in part for individual groups of substances. This will be done using one or more defined control parameters.

WP 1.2
Sampling concept

Contact person
Prof. Dr.-Ing. Matthias Barjenbruch, Technical University of Berlin, Faculty VI – Planning Building Environment, Institute of Civil Engineering, Chair of Urban Water Management, Gustav-Meyer-Allee 25, 13355 Berlin, e-mail: matthias.barjenbruch@tu-berlin.de

Project partners
Wessling, IPS, GKD, Continental, BWB

Short description
Environmental samples will be systematically obtained from road runoff, road sweepings and air, in such amounts that reproducible analysis can be carried out. For all tests, a sampling concept will be prepared in advance by the partners mentioned. As part of the sampling concept, a sampling area-dependent data collection plan was created. The sampling concept for the in situ measurement of the different catchment areas takes into account up to 30 rain events per year and a variety of measurement points. The challenge is to sample individual rain events and evaluate the runoff quantities.

WP 1.3
Development of the sampling basket

Contact person
Dipl.-Ing. Markus Knefel, GKD – Gebr. Kufferath AG, Metallweberstraße 46, 52353 Düren, e-mail: markus.knefel@gkd.de

Project partners
Wessling, IPS, GKD, Continental, BWB

Short description
Tire abrasion particles will be collected from road run-off water in a targeted manner. For this purpose, GKD will design a sampling basket for street drains that allows fractional sampling of a rain event directly in the drainage shaft using defined mesh sizes (lower separation limit ≤ 10 µm).
Initially, development will be carried out virtually by creating various geometries and simulation models, on the one hand, to find an ideal flow path and, on the other hand, to ensure fractionation of the collected particles. The most promising design will then be realized in GKD’s in-house filter construction facility. Below the sampling basket, an explosion-proof measurement technology from ORI will be implemented which records the flow rate data and transmits it wirelessly via GPRS. The function of the sampling basket will be verified under defined conditions at the test stand (FG Urban Water Management). The sampling basket will be examined with regard to its potential as a decentralised treatment plant for street drains. An appropriate backwashing device for the sampling basket will then be developed.

WP 1.4
Analytical evaluation of the methodology and routine analysis

Contact person
Dr. Jens Reiber, WESSLING GmbH, Oststraße 6, 48341 Altenberge, e-mail: jens.reiber@wessling.de

Project partner
Continental

Short description
The samples taken by WESSLING and provided by the partners [road runoff, road sweepings, air particles] will be analysed according to the agreed and implemented analysis and sampling concept and through statistical evaluation. A significant amount of data will be generated for this purpose.

WP 2.1
Production, use, recycling/recovering/disposing

Contact person
Prof. Dr.-Ing. Matthias Barjenbruch, Technical University of Berlin, Institute for Civil Engineering, Faculty VI - Planning Building Environment, Institute of Civil Engineering, Chair of Urban Water Management, Gustav-Meyer-Allee 25, 13355 Berlin, e-mail: matthias.barjenbruch@tu-berlin.de

Project partner
Continental, TUB FG Reibung, ADAC

Short description
The goal is to prepare a literature study and evaluation of existing data from Continental on the tire’s life cycle. The study will enable the assessment of the input of tire particles into the environment throughout the product life cycle. On a theoretical basis, gaps in knowledge on losses of tire particles in production, use and recycling/recycling/disposal are to be closed.

WP 2.2
Identification of the influencing factors in the use phase

Contact person
Prof. Dr. Valentin Popov, Technical University of Berlin, Faculty V of Mechanical Engineering and Transport Systems, Institute of Mechanics, Department of System Dynamics and Friction Physics, Straße des 17. Juni 135, 10623 Berlin, e-mail: v.popov@tu-berlin.de
Project partner
Continental, TUB FG Siwawi, ADAC, VW, IPS

Short description
The aim is to theoretically identify the influencing variables on abrasion quantities throughout the service life of the tire such as climate, road surface, speed, acceleration, braking behaviour, vehicle class and weight. The Department of System Dynamics and Friction Physics will conduct wear experiments and examine the resulting particles microscopically to generate reference points for theoretical analysis.

WP 2.3
Laboratory abrasion test stand

Contact person
Dr. Frank Schmerwitz, Continental Reifen Deutschland GmbH, Jädekamp 30, 30419 Hannover, e-mail: frank.schmerwitz@conti.de

Project partner
TUB FG Reibung

Short description
Wear mechanisms and rates will be determined through laboratory testing. For this purpose, tests are conducted for the following variables: six tread compounds, three loads, three temperatures, two lanes. The samples will be measured by the TUB FG Reibung.

WP 2.4
Test drives

Contact person
Dr. Frank Schmerwitz, Continental Reifen Deutschland GmbH, Jädekamp 30, 30419 Hannover, e-mail: frank.schmerwitz@conti.de

Project partner
TUB FG Siwawi, TUB FG Reibung, VW

Short description
The wear rates of the tires will be estimated depending on the driving dynamics. For this purpose, driving tests will be conducted on a Continental test track with the developed sampling basket installed on the test track. Continental will plan and carry out the tests together with the VW Department of Vehicle Dynamics and the TUB.

WP 3.1
Investigations test stand

Contact person
Prof. Dr.-Ing. Matthias Barjenbruch, Technical University of Berlin, Institute for Civil Engineering, Faculty VI – Planning Building Environment, Institute of Civil Engineering, Chair of Urban Water Management, Gustav-Meyer-Allee 25, 13355 Berlin, e-mail: matthias.barjenbruch@tu-berlin.de

Project partner
IPS

Short description
The goal is to describe the tire abrasion behaviour by conducting rinsing tests at a special test stand of FG Urban Water Management for different rain intensities and road surfaces. For these tests, the existing test stand for simulating different rain events of the FG will be equipped with an irrigation section specifically adapted for this project and different road surfaces will be integrated. These are loaded with tire abrasion particles and road sweepings and drained via a road drainage shaft. The whole test material can be separated again at the outlet via sieves. The runoff behaviour in the gutter and in the road drainage shaft can already be simulated on the test stand; the corresponding test materials will be added to the water flow in the gutter via metering units. Only with the additional irrigation unit consisting of atomisation and different road surfaces, can the removal behaviour be investigated and described in terms of area.
WP 3.2
Road investigation

Contact person
Prof. Dr.-Ing. Matthias Barjenbruch, Technical University of Berlin, Institute for Civil Engineering, Faculty VI - Planning Building Environment, Institute of Civil Engineering, Chair of Urban Water Management, Gustav-Meyer-Allee 25, 13355 Berlin, e-mail: matthias.barjenbruch@tu-berlin.de

Project partner
BSR

Short description
The aim is to describe the waste matrix of the road through sweeping tests and to estimate the input potential for substances in the road runoff. The FG Urban Water Management will continuously carry out sweeping tests on a defined area [approx. 40 m²] on the test track Clayallee [main road]. In addition to the manual sweeping samples, samples will be collected by a small road sweeper from BSR.

WP 3.3
In situ measurement sampling basket

Contact person
Prof. Dr.-Ing. Matthias Barjenbruch, Technical University of Berlin, Institute for Civil Engineering, Faculty VI - Planning Building Environment, Institute of Civil Engineering, Chair of Urban Water Management, Gustav-Meyer-Allee 25, 13355 Berlin, e-mail: matthias.barjenbruch@tu-berlin.de

Project partner
GKD, IPS, BWB, Continental

Short description
The developed sampling basket will be used for street drains from a main road, side road, motorway, parking lot, airport and the Contidrom, Continental’s tire test facility. It may be possible to study an airport within Berlin, else an external airport will be used. Important decision criteria are the number of take-offs and landings as well as the size classes of the certified aircrafts. Sampling baskets are installed in the selected rainwater drains and in the event of a rain event, a notification will be automatically sent from the sampling point to the FG Urban Water Management and the quantities of rainwater flowing through the basket. This makes it possible to estimate the rain event and initiate the necessary transport of the samples.

WP 3.4
Air measurement

Contact person
Dr. Jens Reiber, WESSLING GmbH, Oststrasse 6, 48341 Altenberge, e-mail: jens.reiber@wessling.de

Project partner
TUB FG Siwawi

Short description
The goal is to determine concentrations of airborne tire abrasion particles at the locations of WP 3.3 with the aid of mobile air sampling units [MVS - Medium Volume Sampler]. The air measurements shall serve as a benchmark, therefore only random samples are planned. As part of the site selection for the road run-off drain sampling, the possibility to use existing infrastructures for fine dust measurements will also be checked.

WP 4.1
Street cleaning analysis

Contact person
Dr. Harald Sommer, Ingenieurgesellschaft Prof. Dr. Sieker mbH, Rennbahnallee 109A, 15366 Hoppegarten, e-mail: h.sommer@sieker.de
Project partner
BSR, TUB FG Siwawi

Short description
The effectiveness of street cleaning will be analysed focusing on the mechanical treatment of roads as well as walking and cycling paths. Vehicle types such as street washing vehicles, truck-mounted sweeping and small sweeping machines are used, which are prepared before each project-related use in order to prevent carry-over of sample material. After recording and examining the accumulated pollutants on the surface, conclusions can be drawn as to the effectiveness of street cleaning. This effectiveness is expected to be significantly influenced by the vehicle types used and the corresponding cleaning methods (wet/dry), the variability of the examination areas, the cleaning intervals, driving speeds and other various settings of the vehicle’s technology. Cleaning services for different weather conditions will be investigated and their potential for improvement recorded and described.

WP 4.2
In situ measurement of road drains

Contact person
Prof. Dr.-Ing. Matthias Barjenbruch, Technical University of Berlin, Institute for Civil Engineering, Faculty VI - Planning Building Environment, Institute of Civil Engineering, Chair of Urban Water Management, Gustav-Meyer-Allee 25, 13355 Berlin, e-mail: matthias.barjenbruch@tu-berlin.de

Project partner
BSR, IPS, BWB

Short description
In the existing test section of the Clayallee (Berlin Steglitz-Zehlendorf) the FG Urban Water Management will examine wet sludge traps with and without coarse material buckets. When sampling the wet sludge traps, the entire sludge trap volume will be pumped out and then a corresponding aliquot sample will be collected.

WP 5.1
In situ measurement of road drains

Contact person
Dr. Harald Sommer, Ingenieurgesellschaft Prof. Dr. Sieker mbH, Rennbahnallee 109A, 15366 Hoppegarten, e-mail: h.sommer@sieker.de

Project partner
BSR, IPS, BWB

Short description
The goal is to prepare and carry out pollution load simulations with the hydrological pollution load model STORM-SEWSYS. The model takes into account the accumulation of the emissions and the influence of rain events on the erosion for the calculation of particles entering into the sewer system. STORM-SEWSYS will be extended and adapted for use as part of the project. In addition to freight generation on the basis of DTV (Daily Traffic), approaches for freight generation at load points and road sections with different section characteristics, which are simulated during tire tests, are being developed. The load values correlate with the tire abrasion at the respective load points. This is integrated into SEWSYS via a load factor to be developed and parameterised for practical use. The further developed model will be tested using a sample area. The findings from BSR’s street cleaning services are also going to be incorporated here. For the transfer to the investigated catchment areas, the hydrological pollution load models utilise an adapted model.
WP 5.2
Potential estimation of de-/central rainwater treatment plants

Contact person
Dr. Harald Sommer, Ingenieurgesellschaft Prof. Dr. Sieker mbH, Rennbahnallee 109A, 15366 Hoppegarten, e-mail: h.sommer@sieker.de

Project partner
TUB FG Siwawi, BWB

Short description
The aim is the integration and parametrization of decentralised treatment plants, such as filter inserts in road drainage shafts, rain clarifiers and retention soil filters in SEWSYS. The existing data for reducing the AFS/AFS63 content of technical treatment systems (decentralised/centralised) are used to estimate the retention potential for tire particles. For this purpose, the systems are integrated into the created models by IPS with STORM for specific catchment areas. An estimate of the cleaning performance of decentralised treatment plants should be made mainly with regard to AFS63 as a sum parameter. Conclusions on the retention of tire abrasion can then be drawn from the proportions of the corresponding fractions determined in the project. The model created in WP 5.1 is used to simulate the catchment areas. The estimation of the potential of the plants is based on the results of existing research projects and the measurements within the framework of the RAU research project.

WP 6
Establishment of the set of measures and evaluation tool

Project partners
all

Short description
Based on the data and findings gained in the project, an initial recommendation for action (evaluation tool) and a catalogue of measures will be developed. For this purpose, the generated data sets will be scientifically analysed. The analysis is the basis for the evaluation of potential depressions of tire abrasion in the system of roadway and run-off drainage shafts and for the preparation of the set of measures. Important transfer variables are mass balance, particle size distribution and chemical properties.
<table>
<thead>
<tr>
<th>Project partner</th>
<th>Main areas of work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continental Reifen Deutschland GmbH</td>
<td>Empirical studies on tire abrasion throughout the service life of the tire</td>
</tr>
<tr>
<td>Dr. Frank Schmerwitz</td>
<td></td>
</tr>
<tr>
<td>GKD – Gebr. Kufferath AG</td>
<td>Development of a sampling basket for the in situ sampling of rain events on roads</td>
</tr>
<tr>
<td>Markus Knefel</td>
<td></td>
</tr>
<tr>
<td>ORI Abwassertechnik GmbH & Co. KG</td>
<td>Development of measurement technology for the sampling basket for in situ sampling of rain events on roads</td>
</tr>
<tr>
<td>Jörg Bödecker</td>
<td></td>
</tr>
<tr>
<td>Ingenieurgesellschaft Prof. Dr. Sieker mbH</td>
<td>Evaluation of the input of tire abrasion particles into the environment by simulation and potential estimation</td>
</tr>
<tr>
<td>Dr. Harald Sommer</td>
<td></td>
</tr>
<tr>
<td>WESSLING GmbH</td>
<td>Development of an analysis concept for the parameter tire abrasion from environmental samples</td>
</tr>
<tr>
<td>Dr. Jens Reiber</td>
<td></td>
</tr>
<tr>
<td>Technical University of Berlin</td>
<td>Basics, empirics and in situ investigations on tire abrasion in the environment</td>
</tr>
<tr>
<td>Prof. Dr.-Ing. Matthias Barjenbruch</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Valentin Popov</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Associated partners</th>
<th>Main areas of work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berliner Stadtreinigung</td>
<td>Optimisation of street cleaning as an avoidance measure</td>
</tr>
<tr>
<td>Björn Weiß</td>
<td></td>
</tr>
<tr>
<td>ADAC</td>
<td>Perspective of the consumer</td>
</tr>
<tr>
<td>Michael Niedermeier</td>
<td></td>
</tr>
<tr>
<td>VW</td>
<td>Support in the field of driving dynamics</td>
</tr>
<tr>
<td>Dr.-Ing. Felix Kallmeyer</td>
<td></td>
</tr>
<tr>
<td>Berliner Wasserbetriebe</td>
<td>Expertise and infrastructure</td>
</tr>
<tr>
<td>Regina Gnirss</td>
<td></td>
</tr>
</tbody>
</table>
Textile Mission

Coordinator
Nicole Espey
Federal Association of the German Sporting Goods Industry e.V. / BSI
Adenauerallee 134
53113 Bonn
Phone: +49 228/926593-0
e-mail: nicole.espey@bsi-sport.de

Partner institutions
» Niederrhein University of Applied Sciences
» Technical University of Dresden
» Vaude Sport GmbH & Co. KG
» WWF Germany

Associated partners
» Adidas AG
» Henkel AG & Co. KGaA
» Miele & Cie. KG
» Polartec LLC

Website
www.textilemission.bsi-sport.de

Short description
Textiles made of synthetic fibres can lose microparticles during household washing, which can then enter rivers, lakes and oceans. The goal of Textile-Mission is to reduce the related environmental impact. The project is pursuing an interdisciplinary approach with partners from the Sport Goods Industry, research, the detergent and household appliance sectors, and environmental protection. On the one hand, sport and outdoor textiles with significantly lower microplastic emissions than at present will be developed through textile technology research and the optimisation of production processes. Textile researchers and the sportswear manufacturers involved are also testing biodegradable fibres as an environmentally friendly alternative. With the support of the WWF, care is taken to ensure that other aspects of sustainability are considered. On the other hand, a contribution will be made to optimise wastewater treatment plant technology. Practical innovations at this level could also help to reduce microplastic inputs from non-textile sources. In parallel, data on the extent and range of microparticle emissions from different textiles are systematically collected through tests of washing and laboratory wastewater treatment plants to improve the understanding of the respective material flows.

Main areas of work
» Status quo analysis: the microplastic output of marketable textiles
» Wastewater treatment plant technology: the retention capacity of different cleaning or purification steps
» Holistic perspective: sustainability aspects of alternative materials
» Textile research: biodegradable materials and new cutting and processing possibilities
» Product development: production and testing of prototypes
Work packages

WP 1
Project management, communication and project-related research

Contact person
Nicole Espey, Federal Association of the German Sporting Goods Industry e.V., Adenauerallee 134, 53113 Bonn, e-mail: nicole.espey@bsi-sport.de

Short description
The Federal Association of the German Sport Goods Industry e.V. (BSI) will coordinate the project and is responsible for public relations in consultation with the WWF. In addition to maintaining the website and sending out press releases, this also includes organising multi-stakeholder events. The BSI will conduct a study on the spread of microparticles and the polyester-based microparticle emissions associated with household laundry and collect data on the annual emissions of textile polyester microparticles. Moreover, recommendations will be given on how new materials, manufacturing processes, optimised wastewater treatment plant technology, etc. can help to sustainably reduce microparticle emissions.

WP 2
Development of textile structures for sports and outdoor applications with reduced particle emission in textile washing and based on biodegradable polymers

Contact persons
Prof. Dr. Maike Rabe and Prof. Dipl.-Des. Ellen Bendt, Niederrhein University of Applied Sciences, Faculty of Textile and Clothing Technology, Research Institute for Textile and Clothing, Reinarzstraße 49, 47805 Krefeld, e-mail: maike.rabe@hs-niederrhein.de

Short description
Starting with a status quo analysis, the risk of microparticle emissions from textiles during household laundry will be determined in cooperation with the Technical University of Dresden and the BSI. For this purpose, standard articles from German households, problem articles made of fleece and “top sellers” from the industrial partners involved are washed to quantify the microparticles released. Another focus lies on the development of alternative materials, cutting and processing possibilities. For this purpose, low-emission construction, processing and finishing methods are researched and materials made of or in combination with biopolymers are produced. Finally, as a recommendation for the textile industry, a method for predicting the emission risk of newly developed textile articles will be presented.

WP 3
Microplastics of textile origin – A holistic approach: optimised processes and materials, material flows and environmental behaviour

Contact person
Hilke Anna Patzwall, VAUDE Sport GmbH & CO. KG, VAUDE Straße 2, 88069 Tettnang, e-mail: hilke.patzwall@vaude.com

Short description
The outdoor clothing specialist VAUDE will provide materials and finished products for status quo analysis and assist in the selection of other test materials and products. Niederrhein University of Applied Sciences will develop new materials and construction methods to be tested in coordination with the partners.
After passing the performance test, the materials will then be assembled into prototypes.

The knowledge gained during the manufacturing process will in turn be reflected into the research network - here the question is about i.a. the processability of the materials using conventional sewing machines, among other things.

WP 4

Polyester fibres: Reduction of microparticle release and material flow analysis in the environment

Contact person

Prof. Dr. Stefan Stolte, Technical University of Dresden, Institute of Water Chemistry, Chair of Hydrochemistry and Water Technology, 01062 Dresden, e-mail: stefan.stolte@tu-dresden.de

Short description

At the TU Dresden, an analysis and sample preparation method is established that makes it possible to quantify microparticles from wastewater streams and fractionate them according to size. In addition, the researchers will investigate the retention capacity of textile (fluorescence-labelled) microparticles in the different stages of a laboratory wastewater treatment plant and identify efficient retention possibilities. Material flows are analysed including a first estimate of the Germany-wide textile microplastic emission from wastewater into water bodies /soils is made. In addition, biopolymer-based microplastics (obtained from washing tests with alternative materials at the Niederrhein University of Applied Sciences) will be tested according to their environmental stability to derive design proposals.

WP 5

Consideration of other environmental issues related to the project, stakeholder involvement and communication at the end of the project

Contact person

Dr. Bernhard Bauske, WWF Germany, Kaiserstraße 70, 60329 Frankfurt

E-mail: bernhard.bauske@wwf.de

Short description

Throughout the course of this project, WWF Germany will ensure that sustainability aspects are taken into account even though they are not directly linked to the topic of microplastics. WWF will conduct a study about possible areas of tension that may arise with alternative fibres made of bio-based plastics and wood. For example, the cultivation of textile raw materials vs. cultivation of foodstuffs. Another study will focus on the retention of textile microfibre particles through various purification stages in wastewater treatment plants. At the same time, the WWF wants to involve important stakeholders from NGOs, consumer associations and academia in the project.

Associated partners and their contributions:

adidas AG will provide materials and finished products for status quo analysis and assist in the selection of additional test materials and products. The sporting goods manufacturer will examine the newly developed materials at the Niederrhein University of Applied Sciences, University of Applied Sciences for general marketability and participate in the production and testing of prototypes. The company will also support the BSI in its press and public relations work.
Henkel AG & Co. KGaA will advise the Niederrhein University of Applied Sciences on the construction of the test bench. The company will also support household laundry and wearing test by contributing its expertise on typical household washing and drying parameters.

Miele & Cie. KG will provide the Niederrhein University of Applied Sciences with four household washing machines for the course of the project. In cooperation with Henkel AG & Co. KGaA, the washing machine manufacturer will accompany the household laundry tests and support the modification of the washing processes with its expertise.

Polartec LLC: The world’s largest fleece manufacturer Polartec LLC will support the project with its expertise in the production of fleece and provide standard products for comparisons. In addition, materials developed by the Niederrhein University of Applied Sciences will be prototyped and tested for scalability at the Polartec production sites.

Project partners

Federal Association of the German Sport Goods Industry e.V.
Nicole Espey
- Project coordination/communication
- Data analysis for the annual output of textile polyester microparticles

Niederrhein University of Applied Sciences, Faculty of Textile and Clothing Technology, Research Institute for Textiles and Clothing
Prof. Dr. Maike Rabe, Prof. Dipl.-Des. Ellen Bendt
- Status quo analysis of the microplastic output of synthetic textiles
- Development of alternative materials, cutting and processing techniques

VAUDE Sport GmbH & CO. KG
Hilke Anna Patzwall
- Supply of materials and finished products for status quo analysis
- Testing alternative materials for scalability and packaging of prototypes

Technical University of Dresden, Institute of Water Chemistry, Chair of Hydrochemistry and Water Technology
Prof. Dr. Stefan Stolte
- Investigation of the retention capacity of different cleaning steps of a wastewater treatment plant
- Test of the biodegradability of alternative materials

WWF Germany
Dr. Bernhard Bauske
- Scientific studies on the sustainability of alternative fibres, materials and the status quo of the retention capacity of wastewater treatment plants
- Involvement of stakeholders from areas such as environment and water management
ENSURE

Development of New Plastics for a Clean Environment with Determination of Relevant Entry Points

Coordinator
Prof. Dr. habil. Marc Kreutzbruck
University of Stuttgart
Institute for Plastics Technology / IKT
Pfaffenwaldring 32
70569 Stuttgart
phone: +49 711 685 62812
e-mail: marc.kreutzbruck@ikt.uni-stuttgart.de

Partner institutions
» Federal Environmental Agency / UBA
» Federal Institute for Materials Research and Testing / BAM
» Helmholtz Centre Potsdam - German Research Centre for Geosciences / GFZ
» Technical University of Berlin / TUB
» Osnabrück University, Institute of Environmental Systems Research / IUSF
» Institute for Advanced Sustainability Studies / IASS

Associated partners
» BASF SE
» Herrmann Ultraschalltechnik GmbH & Co. KG
» Berliner Stadtreinigungsbetriebe / BSR
» Berliner Wasserbetriebe / BWB
» Hamm-Lippstadt University of Applied Sciences / HSHL

Short description
The goal of this project is to develop plastics with environmentally optimised decomposition behaviour, which can degrade faster and in a more eco-friendly manner while maintaining the same stability. Furthermore, innovative methods are developed for (i) the quantification and characterisation of recent sources and sinks in the terrestrial sector, (ii) the biological degradation of relevant plastics, and (iii) the analysis of social perceptions and behaviour patterns.

Main areas of work
» Characterisation of relevant sources and sinks as well as area coverage in the terrestrial / semi-terrestrial range ("Traceability")
» Development of environmentally-friendly plastics
» Investigation of the physical, chemical and biological stability of environmentally relevant plastics and testing of novel plastics through demonstration and practical tests ("Optimisability")
» Investigation of the effect of plastics on soil meso- and microfauna and on the biodegradability of plastics in substrates ("Degradability and environmental compatibility")
» Using transdisciplinary research practices as a basis for developing actor-related strategies to promote sustainable use of plastic products ("Perception and behaviour")

Website
www.ensure-project.de
Work packages

WP 1
Traceability

Contact person
Dr. Mathias Bochow, Helmholtz Centre Potsdam
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam,
e-mail: mathias.bochow@gfz-potsdam.de
Dr. Claus Gerhard Bannick, Federal Environmental Agency, Corrensplatz 1, 14195 Berlin, e-mail: claus-gerhard.bannick@uba.de

Project partners
University of Stuttgart IKT, UBA

Short description
In the “Traceability” module, undesirable plastic inputs in prioritised sectors (soils, wastewater treatment plants, composting plants and biogas plants) are detected and identified. In a first step, sampling strategies are developed so that in a second step representative investigations can be carried out to determine the current states of plastics in fermentation, compost and wastewater treatment plants. In addition, plastics in the environment are surveyed nationwide. Airborne exploration methods (remote sensing) will be used for mapping. The aim is to develop a multi-sensor system for quantifying and qualifying the potential environmental impact of plastics.

WP 2
Optimisability

Contact person
Prof. Dr. habil. Marc Kreutzbruck, University of Stuttgart, Institute of Plastics Technology, Pfaffenwaldring 32, 70569 Stuttgart,
e-mail: marc.kreutzbruck@ikt.uni-stuttgart.de

Project partner
BAM

Short description
Within the scope of the module “Optimisability” relevant plastics (PE, PET and PBAT) should be designed sustainably with regard to their degradation behaviour by using suitable additives/modifiers, i.e. they should exhibit an optimised degradation behaviour. For this purpose, the plastics are to be compounded with specifically switchable additives. In order to cover the entire value chain, these materials should be able to be processed into semi-finished products using standard plastics fabrication technologies. In practice, semi-finished plastic products are sealed or two parts are joined together. Therefore, the weldability of the newly developed materials based on ultrasonic joining processes shall be investigated and ensured.

WP 3
Degradability and environmental compatibility

Contact persons
Dr. Ulrike Braun, Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, e-mail: ulrike.braun@bam.de
Prof. Dr. Dirk Wagner, Helmholtz Centre Potsdam – GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam,
e-mail: dirk.wagner@gfz-potsdam.de

Project partners
University of Stuttgart IKT, UBA, Osnabrück University IUSF, TUB
Short description
The “Degradability and environmental compatibility” module includes work on the mechanical understanding of plastic and polymer degradation. Under various environmental conditions, relevant degradation processes are assessed. The aim is to evaluate the degradation behaviour of the materials developed.

WP 4
Perception and behavior

Contact persons
Prof. Dr. Ortwin Renn and Dr. Katharina Bey Erl, Institute for Advanced Sustainability Studies (IASS), Berliner Straße 130, 14467 Potsdam, e-mail: ortwin.renn@iass-potsdam.de; katharina.beyerl@iass-potsdam.de

Project partners
University of Stuttgart IKT, UBA, Osnabrück University IUSF, TUB, GFZ, BAM

Short description
The module “Perception and behaviour” supports the research of human motivations for the handling of plastic as well as the development of recommendations for behavioural offers and communication content to reduce plastics in the environment. Triangulation of related research methods is used for this purpose. By means of expert interviews, focus groups, qualitative in-depth interviews and an online survey with selected target groups, the current patterns of perception and behaviour in dealing with plastics are collected and analysed.

<table>
<thead>
<tr>
<th>Project partners</th>
<th>Main areas of work</th>
</tr>
</thead>
</table>
| University of Stuttgart, Institute for Plastics Technology
 Prof. Dr. habil. Marc Kreutzbruck | » Modification and production of plastics, characterisation and investigation of joining behaviour |
| Federal Institute for Materials Research and Testing
 Dr. Ulrike Braun | » Aging behaviour of polymers, biological material damage and reference organisms |
| Helmholtz Centre Potsdam – German Research Centre for Geosciences
 Prof. Dr. Dirk Wagner | » Detection of plastic waste by remote sensing, microbial degradation |
| Federal Environmental Agency
 Dr. Claus Gerhard Bannick | » Laboratory tests for the simulation of degradation processes in fermentation and composting plants as well as wastewater treatment plants, experiments in practical plants in Berlin |
<table>
<thead>
<tr>
<th>Institution</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institute for Advanced Sustainability Studies</td>
<td>Empirical social science studies on perception and behaviour, development of transdisciplinary approaches to the reduction of plastics in the environment</td>
</tr>
<tr>
<td>Technical University of Berlin</td>
<td>Soil biological experiments, occlusion, and biological degradation of microplastic particles by soil fauna and microflora</td>
</tr>
<tr>
<td>Osnabrück University</td>
<td>Mathematical modelling of fragmentation behaviour, mechanical degradation in the semi-terrestrial range</td>
</tr>
<tr>
<td>BASF SE</td>
<td>Scientific know-how and consulting in the development of a sustainable new degradable material, provision of materials</td>
</tr>
<tr>
<td>Herrmann Ultraschalltechnik GmbH & Co. KG</td>
<td>Technology supplier and consultant for joint analysis, development and construction of an optimised sonotrode</td>
</tr>
<tr>
<td>Berliner Stadtreinigungsbetriebe</td>
<td>In-house fermentation plant for dismantling tests of the new plastic material</td>
</tr>
<tr>
<td>Berliner Wasserbetriebe</td>
<td>Berlin wastewater treatment plants for a series of samplings</td>
</tr>
<tr>
<td>Hamm-Lippstadt University of Applied Sciences</td>
<td>Synthesis of specifically switchable plastic additives</td>
</tr>
</tbody>
</table>
Short description
Consumers buying products made of or wrapped in plastic play a decisive role in plastic consumption in Germany. A complete avoidance of plastic in everyday life, while unlikely to occur in full, would only be possible with extremely high restrictions. Moreover, many consumers are not aware of how much plastic is put into circulation or into the environment by buying a product. The consumer can, however, influence the use of plastics with targeted product selection at the point of sale (PoS) (e.g. the choice of plastic-free products).

Against this background, this project will investigate to what extent the consumer can avoid the generation of plastic waste by making a purchase decision at the PoS. Another aspect is to what extent help can be provided for this decision, e.g. through different avoidance strategies. This will be examined using food packaging and clothing textiles as examples. The former was chosen because food packaging has the highest capital costs for the environment in absolute terms (UNEP 2014). Textiles were chosen because they are made of plastic, a high proportion of synthetic fibres is used and a lot of plastic is produced by packaging the textiles.

Main areas of work
» Investigating the understanding and behaviour of consumers when buying (or co-acquiring) plastics
» Identification of plastic avoidance strategies along the textile and food supply chains
» Holistic evaluation of different plastic alternatives (life cycle assessment)
» Development of new products/processes that help to reduce plastic consumption/use
» Information on product-specific plastic consumption using a plastic app
Work packages

WP 1
Project coordination and project management

Contact person
Dr. Thomas Decker, Stadt Straubing, Theresienplatz 2, 94315 Straubing, e-mail: thomas.decker@straubing.de

Project partners
Weihenstephan-Triesdorf University of Applied Sciences, General and Textile Industry Research Institute, University of Muenster, Fraunhofer Institute for Process Engineering and Packaging, University of Stuttgart, Philipps-University Marburg, Ludwig Stocker Hofpfisterei GmbH

Short description
The City of Straubing will coordinate the consortium in the supervisory WP 1. This includes the coordination of content, operations (link between science and SMEs) and organisation (project meetings, telecons, reports, timetable, etc.). In addition, the City of Straubing is responsible for public relations (reciprocal and interactive communication with stakeholder groups in the study region and in Germany, presswork, Internet media, etc.).

WP 2
Consumer purchasing behavior when buying plastic articles

Contact person
Prof. Dr. Klaus Menrad, Weihenstephan-Triesdorf University of Applied Sciences, Department of Marketing and Management of Renewable Resources, Petersgasse 18, 94315 Straubing, e-mail: klaus.menrad@hswt.de

Project partners
Stadt Straubing, Ludwig Stocker Hofpfisterei GmbH

Short description
The behaviour of customers in the shops of partners in the City of Straubing will be assessed in regard to food packaging and clothing textiles, with particular attention paid to plastic. The aim is, on the one hand, to capture the open, observable shopping and plastic behaviour of consumers. On the other hand, the knowledge and problem awareness in plastic matters shall be determined. Furthermore, common themes will also be examined when purchasing plastic-packed food or textiles.

WP 3
What role does plastic play in commerce?

Contact person
Dr. Thomas Decker, Stadt Straubing, Theresienplatz 2, 94315 Straubing, e-mail: thomas.decker@straubing.de

Partner institutions
Weihenstephan-Triesdorf University of Applied Sciences, Ludwig Stocker Hofpfisterei GmbH

Short description
The respective offer at the PoS is very important for consumers’ purchasing decisions. For this reason, the assortment of practical partners in the food and textile commerce as well as the disposal routes of plastic waste produced in shops are being investigated. This provides a business level overview of the respective volume of plastic. The selected shops are examples of different types of food retailing and textile merchandise management.
WP 4
Plastics along the value chain

Contact person
Sven Sängerlaub, Fraunhofer Institute for Process Engineering and Packaging, Giggenhauser Straße 35, 85354 Freising, e-mail: sven.saengerlaub@ivv.fraunhofer.de

Short description
The aim of this work package is to obtain a general overview of the occurrence and use of plastics (especially intermediate packaging) in the supply chains for textiles, with a focus on functional textiles and men’s fashion, and foodstuffs. The aim is to investigate the areas in which the use of plastic is necessary and where it can be reduced or avoided. Thus, there are various possibilities within the value chains to reduce or avoid the use of plastics, e.g. by optimizing the transport packaging systems between the individual stations.

WP 5
Development and provision of alternative packaging options

Contact person
Sven Sängerlaub, Fraunhofer Institute for Process Engineering and Packaging, Giggenhauser Straße 35, 85354 Freising, e-mail: sven.saengerlaub@ivv.fraunhofer.de

Project partners
Stadt Straubing, University of Stuttgart, Ludwig Stocker Hofpfisterei GmbH

Short description
For the practical testing of alternative packaging and communication with retailers and end customers, suitable materials are being developed, samples produced and appropriate specifications drawn up for incoming and outgoing processes for manufacture and recycling. Various packaging alternatives for the food sector are then manufactured at IVV on a pilot-plant scale for pilot applications or produced by industrial partners. These patterns represent different approaches to avoid or reduce the use of plastics.

WP 6
Avoidance of plastic along the entire textile supply chain

Contact person
Prof. Dr. Gerhard Schewe, University of Münster, Chair of Business Administration, Universitätstraße 14–16, 48143 Münster, e-mail: orga@wiwi.uni-muenster.de

Project partners
Stadt Straubing, University of Stuttgart

Short description
Within the scope of a business case, innovative strategies are developed for analysing the entire textile supply chain regarding avoidable plastic use, together with practice partners from the textile industry. First the object of investigation is defined and delineated to provide a specification sheet for the analysis of the actual state, for the formulation of the target state under consideration of cost positions, for monetary advantages, and non-monetary aspects, and for functional, and non-functional requirements.

WP 7
Innovative recycling strategies for the textile sector

Contact person
Prof. Dr. Gerhard Schewe, University of Münster, Chair of Business Administration, Universitätstraße 14–16, 48143 Münster, e-mail: orga@wiwi.uni-muenster.de

Project partners
Stadt Straubing, University of Stuttgart
Short description
For the unavoidable use of plastics in the textile supply chain, sustainable recycling strategies are developed in a business case in cooperation with practice partners from the textile commerce who see plastics as a promising resource for innovative manufacturing and production processes (for the areas of men’s fashion and functional textiles). The focus is on additive manufacturing processes (colloquially: 3D printing) that offer innovative recycling solutions across divisions and industries thus forming a link to the research area of food packaging.

WP 8
Context-specific life cycle analysis of the product examples

Contact person
Dr.-Ing. Stefan Albrecht, University of Stuttgart, Faculty 2: Civil and Environmental Engineering, Institute for Acoustics and Building Physics [IABP], Department of Life Cycle Engineering, Winkelstraße 5, 70563 Stuttgart, e-mail: gabi@iabp.uni-stuttgart.de

Project partners
Stadt Straubing, Weihenstephan-Triesdorf University of Applied Sciences, General and Textile Industry Research Institute, University of Muenster, Fraunhofer Institute for Process Engineering and Packaging, University of Stuttgart, Philipps-University Marburg, Ludwig Stocker Hofpfisterei GmbH

Short description
Which global problems are caused by plastics along their supply chain and how severe are theses? This question is answered by means of a context-specific analysis with regard to the entire life cycle of possible product solutions (textile, food) or plastics [e.g. food packaging] and the entire range of problems based on the life cycle assessment method and information from the previous work packages. Various practice partners from the textile and food commerce provide support.

WP 9
Testing “new solutions”

Contact person
Prof. Dr. Klaus Menrad, Weihenstephan-Triesdorf University of Applied Sciences, Department of Marketing and Management of Renewable Resources, Petersgasse 18, 94315 Straubing, e-mail: klaus.menrad@hswt.de

Project partners
Stadt Straubing, General and Textile Industry Research Institute, University of Muenster, Fraunhofer Institute for Process Engineering and Packaging, University of Stuttgart, Philipps-University Marburg, Ludwig Stocker Hofpfisterei GmbH

Short description
The newly developed products/solutions of WP 5 and 6 are verified for consumer acceptance and tested in the stores of partner companies in the food and textile industry for a period of two weeks. In addition to the sales figures, further consumer reactions will also be collected in 300 personal interviews. The developed app [Android and iOS version] will also be included in the test and tested for applicability.

WP 10
Elaboration and documentation of practice-oriented recommendations for action

Contact persons
Prof. Dr. Gerhard Schewe, University of Münster, Chair of Business Administration, Universitätsstraße 14–16, 48143 Münster, e-mail: orga@wiwi.uni-muenster.de
Sven Sängerlaub, Fraunhofer Institute for Process Engineering and Packaging, Giggenhauser Straße 35, 85354 Freising, e-mail: sven.saengerlaub@ivv.fraunhofer.de
Prof. Dr. Klaus Menrad, Weihenstephan-Triesdorf
University of Applied Sciences, Department of
Marketing and Management of Renewable
Resources, Petersgasse 18, 94315 Straubing,
e-mail: klaus.menrad@hswt.de

Project partners
Stadt Straubing, Philipps-University Marburg,
Ludwig Stocker Hofpfisterei GmbH

Short description
Based on the results obtained, recommendations
for action will be formulated for the industries
examined and then summarised into compact
documentation. The recommendations for action
are derived in close coordination with all partners
and on the basis of the strengths and weaknes-
ses, opportunities and risks of the solutions and
strategies jointly identified throughout the course
of the project. The aim is to achieve a clear impact
assessment for the solutions and strategies
developed and thus contribute to a reduction in
use of plastics on the consumer side.

Case Studies
Several case studies in the areas of food packaging and textiles are conducted
within this project. For example, alternative packaging variants are developed for
the following areas: service packaging, bowls/trays and bags for baked goods.
These packaging alternatives will be tested in the course of the project with regard
to “quality”, “consumer acceptance” and for improvement of the “plastic index”.

In the field of textiles, innovative strategies for the analysis of the entire textile
supply chain to identify avoidable use of plastics are established together with
practice partners. In addition, sustainable recycling strategies are developed
that consider plastics as a promising resource for innovative manufacturing and
production processes [for men’s fashion and functional textiles]. The focus is on
additive manufacturing processes [colloquially: 3D printing] that offer innovative
recycling solutions across divisions and industries.
<table>
<thead>
<tr>
<th>Project partners</th>
<th>Main areas of work</th>
</tr>
</thead>
</table>
| Stadt Straubing
Dr. Thomas Decker | » Network and project coordination
» Assessing the range of goods on offer in the retail trade and deriving the “plastic load” |
| Weihenstephan-Triesdorf University of Applied Sciences, Department of Marketing and Management of Renewable Resources
Prof. Dr. Klaus Menrad | » Consumer surveys
» Consumer experiments |
| General and Textile Industry Research Institute, University of Muenster
Prof. Dr. Gerhard Schewe | » Textile value chain
» Plastic avoidance & innovative recycling of textiles |
| Fraunhofer Institute for Process Engineering and Packaging
Sven Sängerlaub | » Value chain food packaging
» Alternative packaging materials for foodstuff |
| University of Stuttgart, Institute for Acoustics and Building Physics (IABP), Department of Life Cycle Engineering
Dr.-Ing. Stefan Albrecht | » Accounting |
| Philipps-University Marburg, Department of Bioinformatics
Prof. Dr. Dominik Heider | » App programming |
| Ludwig Stocker Hofpfisterei GmbH
Jochem Holterbosch | » Packaging of baked goods |
PlastikBudget

Development of Budget Approach and LCA Impact Assessment Methodology for the Governance of Plastics in the Environment

Coordinator
Jürgen Bertling
Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Products Division, Department of Sustainability and Resource Management,
Osterfelder Straße 3
46047 Oberhausen
Phone: +49 208/8598-1168
e-mail: juergen.bertling@umsicht.fraunhofer.de

Partner institution
» Institute for Advanced Study in the Humanities / KWI

Short description
In order to legitimise political decisions on the problem of plastic emissions into the environment, it is necessary to formulate a quantitative emission target. The budget approach for plastic emissions, will be developed within the framework of this project. The research work is guided by the following questions: What amount of plastics in the environment is still acceptable? How long are plastics present in the environment until they are completely degraded? How can a global budget derived from answering these two questions be equitably shared by national per capita budgets? The aim of the project is not to establish a budget itself, but to show ways of deriving it from empirically verified data and normative values. This creates a basis for future political decision-making processes. However, consistent governance also requires that the plastic emissions of various products, processes and consumption practices are accounted for in terms of quantity released and downstream environmental impacts. The second part of the project consists of developing an impact assessment methodology in order to adequately take plastic emissions into account in life cycle analyses.

Main areas of work
» Sources and sinks, history and dynamics of the plastic inputs into the environment
» Use of various participation formats to discuss the issue of plastic emissions with stakeholders
» Development of a budget approach for plastic emissions
» Development of a method for the integration of plastic emissions in life cycle assessments
» Dissemination and anchoring of results in politics, society, economy and science
Work packages

WP 1
Review and discussion on the state of knowledge on plastic inputs into the environment

Contact persons

Jürgen Bertling, Fraunhofer UMSICHT, Osterfelder Straße 3, 46047 Oberhausen, e-mail: juergen.bertling@umsicht.fraunhofer.de

Dr. Steven Engler and Anna Bönisch, KWI, Goethstraße 31, 45128 Essen, e-mail: steven.engler@kwi-nrw.de, anna.boenisch@kwi-nrw.de

Short description

WP 1 focuses on the scientific, technical, ecological and economic as well as on the socio-cultural aspects. Furthermore, this work package develops the participation programmes in the project in detail.

WP 2
Development of a budget approach for plastic emissions

Contact persons

Jürgen Bertling, Fraunhofer UMSICHT, Osterfelder Straße 3, 46047 Oberhausen, e-mail: juergen.bertling@umsicht.fraunhofer.de

Dr. Steven Engler and Anna Bönisch, KWI, Goethstraße 31, 45128 Essen, e-mail: steven.engler@kwi-nrw.de, anna.boenisch@kwi-nrw.de

Short description

WP 2 involves researching and developing a budget approach for plastic emissions as well as conducting a stakeholder dialogue on the approach. Moreover, this work package will utilise outreach dialogue with citizens and a living lab.

WP 3
Development of an impact assessment method for the integration of the plastic emissions in life cycle analysis

Contact person

Dr. Daniel Maga and Nils Thonemann, Fraunhofer UMSICHT, Osterfelder Straße 3, 46047 Oberhausen, e-mail: daniel.maga@umsicht.fraunhofer.de, nils.thonemann@umsicht.fraunhofer.de

Short description

WP 3 will focus on research and elaboration of existing impact assessment methods. Additional focus will be on understanding the relationship between impact assessment methodology and the budget approach. For these purposes, expert dialogues and workshops will be conducted.

WP 4
Dissemination and establishing budget approaches and impact assessments for plastic emissions in science, politics and society

Contact person

Miriam Wienhold, KWI, Goethstraße 31, 45128 Essen, e-mail: miriam.wienhold@kwi-nrw.de

Short description

WP 4 will involve selecting actors for the various dialogue formats and developing a socially robust communication strategy. Conferences and debates will be held with an overarching focus on public relations for this project.
PLASTRAT

Strategies for Reducing the Entry of Urban Plastics into Limnic Systems

Coordinators
Prof. Dr.-Ing. Christian Schaum and
apl. Prof. Dr.-Ing. Steffen Krause
Bundeswehr University Munich Institute of
Hydroscience / UniBwM Chair of Sanitary
Engineering and Waste Management
Werner-Heisenberg-Weg 39
85577 Neubiberg
Phone: + 49 89-6004-2061
bzw. -2698 /-3849
e-mail: swa@unibw.de

Partner institutions
» Goethe University Frankfurt / UF
» Institute for Social-Ecological Research/IOSE
» IWW Rheinisch-Westfälisches Institute
 for Water Research gGmbH / IWW
» German Federal Institute of Hydrology (BfG) / BfG
» quadrat ingenieure GmbH / a2i
» Technical University of Darmstadt,
 Institute IWAR / TUDa
» inge GmbH /inge
» Leibniz Institute of Polymer
 Research Dresden / IPF
» Leibniz Institute for Baltic Sea
 Research Warnemünde / IOW

Associated partners and subcontractors:
» Münchner Stadtentwässerung
» Stadt Weißenburg in Bayern
» Entsorgungsbetriebe der
 Landeshauptstadt Wiesbaden
» Stadt Weiterstadt, Eigenbetrieb Stadtwerke
» Gemeindliche Einrichtungen
 und Abwasser Holzkirchen
» Autobahndirektion Süd Bayern
» CARAT GmbH
» PlasticsEurope Deutschland e.V.
» Kelheim Fibres GmbH
» DWA Landesverband Bayern
» Technical University of Munich,
 Analytical Chemistry
» The Sustainable People GmbH

Website
www.plastrat.de/project/

Short description
The common element of all investigations in PLASTRAT is the development of solution strategies for sustainable limitation of the spread of plastic residues in the aquatic environment on technical, environmental, scientific and social-ecological levels. The objective consists of developing a multi-criteria evaluation approach for the environmental compatibility of different types of plastics. In addition, a quality label for practical application shall be designed. The focus lies on the analysis and evaluation of the degradation stages of different types of plastics as well as leaching, adsorption and desorption in different wastewater treatment stages, the effects of different plastic species (in different degradation stages) and their additives on aquatic organisms in limnic systems, as well as a risk characterisation of the human toxicological effect of microplastics on consumers of drinking water. Furthermore, the emphasis is put on the quantification and technical reduction potential (e.g. use of membrane technology) of plastic emissions in urban water management, including sewage sludge/fermentation residue treatment, taking into account suitable sampling, treatment and analysis methods. Besides, studies are carried out on the social relevance, i.e. how plastics are handled in German households, what demands the consumer places on plastics, what possibilities exist for the use of substitutes and the resulting effects on commerce, logistics and consumers.

Main areas of work
» Determination and evaluation of microplastic pathways in limnic systems
» Investigation and evaluation of technical measures for microplastic elimination
» Sampling strategies for further processing and analysis of microplastics
» Sample preparation for analysis of microplastics
» Identification and quantification of microplastics in all samples
» Automation of particle recognition, measurement and identification using databases
» Adsorption/desorption of pollutants on microplastics
» Degradation and leaching of polymers of different groups
» Ecotoxicological studies of released substances from microplastics
» Human toxicological investigations of released substances from microplastics
» Risk analysis of drinking water
» Investigation of societal relevance
» Development of a multi-criteria evaluation system
» Development of a quality label through an accompanying stakeholder dialogue

Work packages

WP K
Coordination and Communication

Contact persons
Prof. Dr.-Ing. Christian Schaum, apl. Prof. Dr.-Ing. Steffen Krause, Bundeswehr University Munich, Institute of Hydrosience, Chair of Sanitary Engineering and Waste Management, Werner-Heisenberg-Weg 39, 85577 Neubiberg, e-mail: swa@unibw.de

Short description
In addition to the tasks of general scientific project management, internal communication between the network partners and external communication (increasing public awareness of the project) are also covered. This includes, among other things, uniform guidelines for public relations work by individual network partners and within the overall consortium, organisation of meetings, monitoring of work progress, document management and coordination of the associated partners.

WP 1
Microplastics in the urban water cycle

Contact persons
PPProf. Dr.-Ing. Christian Schaum, apl. Prof. Dr.-Ing. Steffen Krause, Bundeswehr University Munich,
Institute of Hydrosience, Chair of Sanitary Engineering and Waste Management, Werner-Heisenberg-Weg 39, 85577 Neubiberg, e-mail: swa@unibw.de

Project partners
UF, IWW, BfG, a2i, TUDa, inge, IPF, IOW

Short description
Basic data and definitions for PLASTRAT are specified in consultation with all project partners. This relates to the definition of the upper and lower limit of the particle size for microplastic particles to be examined, the selection of specific plastic species from the categories conventional plastics, recyclates, and biobased or biodegradable polymers. Further preliminary work includes the selection or determination of suitable sites for investigations of WP 2 and 3, taking into account the products considered in WP 5. In addition, the stakeholder analysis is prepared and a more detailed evaluation for developing the quality label.

WP 2
Degradation and material dynamics

Contact person
Prof. Dr. Thomas Ternes, German Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz, e-mail: ternes@bafg.de

Project partners
UniBwM, TUDa

Short description
The environmental behaviour of biobased, synthetic and recycled plastics is analysed in WP 2. Original materials are examined, as well as artificially-aged materials. The release of pollutants (oligomers, additives and their transformation products) is analysed depending on the type of polymer and the degree of degradation. Furthermore, differences in the adsorption/desorption of environmental chemicals are investigated for different types of polymers and the role of wastewater treatment plants regarding the pollutant load of microplastics (enrichment or depletion).
WP 3
Entry points and elimination

Contact persons
Prof. Dr.-Ing. Christian Schaum, apl. Prof. Dr.-Ing. Steffen Krause, Bundeswehr University Munich, Institute of Hydroscience, Chair of Sanitary Engineering and Waste Management, Werner-Heisenberg-Weg 39, 85577 Neubiberg, e-mail: swa@unibw.de

Project partners
UniBwM, a2i, inge, IPF, IOW

Short description
Different entry points of microplastics into limnic systems are assessed, focusing on the analysis and evaluation of the waste water management system including measures for microplastic retention (e.g. membrane technology) that already exist or have been modified or developed in the course of the project. Core areas comprise rain and mixed water discharge, the assessment and evaluation of the entire wastewater treatment plant system, and an analysis of sewage sludge, digestate and compost as possible microplastic sinks. Emphasis is also put on the development and selection of suitable processing and analytical methods.

WP 4
Impact and hazard analysis

Contact persons
Prof. Dr. Jörg Oehlmann, Dr. Ulrike Schulte-Oehlmann, Goethe University Frankfurt, Max-von-Laue-Straße 13, 60438 Frankfurt, e-mail: oehlmann@bio.uni-frankfurt.de

Project partner
IWW

Short description
Comparative analyses are conducted for biobased, synthetic and recycled plastics in different degradation stages as well as for their additives and substances adsorbed/desorbed regarding their effects applying various human and ecotoxicological methods. The results are used to derive threshold values and environmental quality objectives. These should contribute to the hazard analysis and evaluation of the different plastic species with regard to their relevance and environmental compatibility for the limnic environment. The experimental investigations are supplemented by a risk analysis of the drinking water system.

WP 5
Societal relevance

Contact person
Dr. Immanuel Stieß, ISOE - Institute for Social-Ecological Research, Hamburger Allee 4, 60486 Frankfurt, e-mail: stiess@isoe.de

Short description
The social perception, use and disposal of plastic-based products are analysed as well as the possibilities, conditions and obstacles for more sustainable consumption and disposal practices. The focus lies on applications in the non-food sector (hygiene articles, clothing and dog excrement bags) as their incorrect or informal disposal can lead to the emission of microplastics into limnic systems that may have negative effects on organisms and aquatic ecosystems. Analysing of the perception of environmental risks and product-specific use and disposal practices is carried out through qualitative exploration and standardised surveys.

WP 6
Evaluation system/quality label

Contact person
Kristina Wencki, IWW Rheinisch-Westfälisches Institute for Water Research gGmbH, Moritzstraße 26, 45476 Mülheim an der Ruhr, e-mail: k.wencki@iww-online.de

Project partners
ISOE, UniBwM, UF, BfG
Short description

Within the project, a multi-criteria evaluation system for plastics regarding to their environmental compatibility with limnic systems is developed. At the same time, the identification of the evaluation criteria is used to initiate the critical discourse about the quality label that demonstrates this environmental compatibility. To this end, a stakeholder dialogue will be conducted. In addition to synthesizing the outcomes of the preceding work packages, this is intended to make a significant contribution to transfer the newly acquired findings into research and business practice.

<table>
<thead>
<tr>
<th>Project partners</th>
<th>Main areas of work</th>
</tr>
</thead>
</table>
| Bundeswehr University Munich
Prof. Dr.-Ing. Christian Schaum
apl. Prof. Dr.-Ing. Steffen Krause | » Project coordination
» Determination and evaluation of microplastic entry points in limnic systems
» Investigation and evaluation of technical measures for microplastic elimination
» Sampling strategies for further processing and analysis of microplastics
» Degradation and leaching of polymers of different groups |
| Goethe University Frankfurt
Prof. Dr. Jörg Oehlmann
Dr. Ulrike Schulte-Oehlmann | » Ecotoxicological studies of released substances from microplastics |
| ISOE – Institute for Social-Ecological Research
Dr. Immanuel Stieß | » Investigation of societal relevance
» Development of a multi-criteria evaluation system
» Development of a quality label through an accompanying stakeholder dialogue |
| IWW Rheinisch-Westfälisches Institute for Water Research gGmbH
Dr. Anne Simon | » Human toxicological investigations of released substances from microplastics
» Hazard analysis of drinking water
» Development of a multi-criteria evaluation system |
| German Federal Institute of Hydrology (BfG)
Prof. Dr. Thomas Ternes | » Degradation and leaching of polymers of different groups |
| aquadrat ingenieure GmbH
Dr.-Ing. Tobias Günkel-Lange | » Investigation and evaluation of technical measures for microplastic elimination |
| Technical University of Darmstadt, Institute IWAR
Prof. Dr. Liselotte Schebek | » Adsorption/desorption of pollutants on microplastics |
| inge GmbH
Christian Staaks | » Investigation and evaluation of technical measures for microplastic elimination |
| Leibniz Institute of Polymer Research Dresden
Dr. Dieter Fischer | » Identification and quantification of microplastics in all samples
» Automation of particle recognition, measurement and identification via databases |
| Leibniz Institute for Baltic Sea Research Warnemünde
PD Dr. Matthias Labrenz | » Sample preparation for the analysis of microplastics |
Representative Investigation Strategies for an Integrative System Approach to Specific Emissions of Plastics into the Environment

Coordinator
Dr. Ulrike Braun
Federal Institute for Materials Research and Testing / BAM
Unter den Eichen 87
12205 Berlin
Phone: +49 30 8104-4317
e-mail: ulrike.braun@bam.de

Partner institutions
» Federal Environmental Agency / UBA
» Technical University of Chemnitz / TUC
 » Fraunhofer Centre for Silicon Photovoltaics / CSP
 » Technical University of Kaiserslautern / TUK
 » Fritz Haber Institute of the Max Planck Society / FHI
» Technical University of Munich / TUM
 » Technical University of Berlin / TUB
 » SmartMembranes GmbH / SMB
 » Kreuzinger und Manhart Turbulenz GmbH / KMT
 » Umwelt – Geräte – Technik GmbH / UGT

Associated partners:
» PlasticsEurope Deutschland e.V. / PlasticsEurope
 » Zentralverband Elektrotechnik- und Elektronikindustrie e.V. / SVEI
 » GKD - Gebr. Kufferath AG
 » Westfalia Separator Group GmbH / GEA

Website
https://netzwerke.bam.de/ruseku

Short description
This project aims to develop representative investigation methods and strategies for an integrative system understanding of relevant plastic entry paths into the environmental compartment water. The sampling methods to be developed are evaluated in terms of their concentration concept, their local use, their sampling throughput, and their selectivity for particles of different properties, sizes, and shapes. For this purpose, defined microplastic particles will be produced with these varying characteristics and tested for representative recovery of sampling procedures in the laboratory and in semi-industrial simulation facilities. The methods developed in this way will be translated into specific investigation strategies, adapted and then applied to real environmental areas for different transport paths in the urban wastewater system. The adaptation is carried out with the aid of supporting simulation methods. In addition to the academic understanding of microplastic entry points, causes and pathways, market-ready methods for efficient microplastic sampling are developed in cooperation with the companies involved. These methods form a basis for evaluation by legislators and for standardisation.

Main areas of work
» Development of efficient, integrative and representative research methods and strategies (accuracy, repeatability, transferability) for the determination of relevant microplastic contents over the different areas of the water cycle
» Establishment of goal-oriented, analytical methods for the detection of microplastic particles according to practical aspects
» Simulations of the dynamics of particles in water bodies in semi-industrial laboratory tests
» Further development of sampling to quantify the microplastic volume and transport in the...
real, urban waste water system for the waste water fractions: precipitation water, domestic waste water, and industrial waste water

» Generation of a simulation code for the dynamics of microplastic particles in waters

Work packages

WP 1
Production of microplastics and microplastic suspensions

Contact person
Prof. Dr.-Ing. Michael Gehde, Technische Universität Chemnitz, Institute for Materials Handling and Plastics, Reichenhainer Straße 70, 09126 Chemnitz, e-mail: michael.gehde@mb.tu-chemnitz.de

Project partners
BAM, TUB, PlasticsEurope

Short description
First, defined, heterogeneous microplastic mixtures are developed for the environmental testing in water and soil. After the initial use of existing materials (e.g. particles from cryogenic grinding, commercial products), plants for the realistic and defined production of microplastic particles will be set up during the project period: UV degradation systems for thin-walled, defined materials, dry or aqueous mechanical abrasion systems for fibres from textile applications, and abrasion simulation systems for the generation of spherical particles. The other project partners will contribute to the characterisation of these model materials by applying their analytical methods.

WP 2
Development of sampling methods

Contact person
Dr. Claus Gerhard Bannick, Federal Environmental Agency, Corrensplatz 1, 14195 Berlin, e-mail: claus-gerhard.bannick@uba.de

Project partners
UGT, CSP, SMB, TUK, GEA, GKD, SVEI

Short description
In WP 2, efficient, reliable and reproducible sampling methods and strategies are developed for the microplastic model particles of different varieties, densities, sizes and shapes in the stream simulation facility at UBA. Their usability and reproducibility will also be investigated for routine operation and the methods will be evaluated based on the recovery rates of experiments. The individual project partners are optimising their analytical procedures: from the use of conventional flow-through centrifuges to the cascade filtration system, suspended matter traps, hydrodynamic modelling, and lysimeter tests to the control of possible input into groundwater.

WP 3
Simulations

Contact person
Prof. Dr.-Ing. Michael Manhart, Technical University of Munich, Associate Professorship of Hydromechanics, Arcisstraße 21, 80333 München, e-mail: m.manhart@bv.tum.de

Project partners
KMT

Short description
The methodological developments from WP 2 are supported by accompanying simulations in WP 3. These simulations result in a description of the vertical distributions of spheroids at different particle sizes and shapes in a turbulent surface water or stream simulation facility. The models and results are integrated into a software that simulates geometrically complex, application-oriented cases. A sampling strategy is derived from the simulation results. Relevant material parameters of the particles such as size distribution, real density or surface properties from WP 1 as well as from partners from WP 5 are included.
WP 4
Sampling of real environmental compartment

Contact person
Prof. Dr.-Ing. Heidrun Steinmetz,
Technical University of Kaiserslautern, Institute of Water - Infrastructure - Resources,
Paul-Ehrlich-Straße 14, 67663 Kaiserslautern,
e-mail: heidrun.steinmetz@bauing.uni-kl.de

Project partners
UBA, TUM, KMT

Short description
The main focus of WP 4 is the quantification of the microplastic volume and transport in the real, urban wastewater system for the wastewater and precipitation water, domestic wastewater (partial flows grey and black water), industrial wastewater, and mixed wastewater. The findings from the sampling in WP 2 will be implemented and improved. Further work will focus on sample preparation and preservation to evaluate the comparability of different sampling strategies. The investigations focus on the quantities and the importance of microplastic volumes in the individual entry points of the urban wastewater system into the water bodies.

WP 5
Analytics

Contact person
Dr. Ulrike Braun, Federal Institute for Materials Research and Testing (BAM), Division 5.3 Mechanics of Polymers, Unter den Eichen 87, 12205 Berlin,
e-mail: ulrike.braun@bam.de

Project partners
CSP, TUM, FHI

Short description
The analytics used in the individual work packages are based on the requirements for sample preparation and analytical procedures as well as on the necessary information to be generated, not on the general feasibility. WP 5 serves the intensive exchange of results generated with complementary analytical methods. In addition, the respective methods, supported by the results of the other project partners, will be further refined and adapted.

Case studies
As a real environmental simulation, individual components of the wastewater system of the city of Kaiserslautern are investigated. In concrete terms, precipitation water is sampled here on settlement and traffic areas as well as domestic and industrial wastewater.

In addition, air sampling will also be carried out at the limits of comparable sampling sites. Locations in Berlin and in the Halle/Leipzig area are planned. The planned lysimeter tests will be carried out in Berlin and thus allow an assessment of groundwater recharge in Berlin and Brandenburg.
<table>
<thead>
<tr>
<th>Project partners</th>
<th>Main areas of work</th>
</tr>
</thead>
</table>
| Federal Institute for Materials Research and Testing| Overall coordination of the project
Dr. Ulrike Braun
Standardisation of microplastic detection methods, implementation of analytical procedures and extension by new analytical developments (chemometric data analysis) |
| Federal Environmental Agency | Sampling procedures: concept development, preliminary tests
Dr. Claus Gerhard Bannick
laboratory experiments, operation of stream water simulation plant & lysimeter, optimisation of the developed sampling equipment, transfer of laboratory tests into field tests
Sampling of water, air & soil for specific entries |
| Technical University of Chemnitz | Provision of model materials with defined properties
Prof. Dr.-Ing. Michael Gehde
Construction of degradation plants for realistically aged model materials |
| Fraunhofer Centre for Silicon Photovoltaics CSP | Optimisation of wafer treatment processes for new filter materials with variable properties (cascade filters)
Dr. Christian Hagendorf
evaluation of optical properties and suitability for microplastic analysis |
| Technical University of Kaiserslautern | Application of the new processes (cascade filter, particulate trap and flow centrifuge) in the real environmental compartment for precipitation and waste water
Prof. Dr.-Ing. Heidrun Steinmetz
evaluation of the relevance of the entry points in the urban wastewater system |
| Fritz Haber Institute of the Max Planck Society | Application of complex analytical methods for microstructure analysis of microplastic particles
Dr. Thomas Lunkenbein |
| Technical University of Munich | Development of a simulation algorithm for the microplastic particle transport in waters
Prof. Dr.-Ing. Michael Manhart
Application for sampling strategies in the real environmental compartment |
| Technical University of Berlin | Provision of stable microplastic suspensions with defined properties
Dr.-Ing. Aki Sebastian Ruhl
evaluation of the influence of biological and chemical factors on particle behaviour |
| SmartMembranes GmbH | Production of filter materials (product) with optimised properties (cascade filters)
Monika Lelonek |
| Kreuzinger und Manhart Turbulenz GmbH | Production of a simulation algorithm (product) for representative sampling
Dr.-Ing. Florian Schwertfirm |
| Umwelt- Geräte- Technik GmbH | Design and manufacture of optimised particulate traps (product)
Bernd Fürst |
SubµTrack

Tracking of (Sub)Microplastics of Different Identities - Innovative Analysis Tools for Toxicological and Process-engineering Evaluation

Coordinator
Prof. Dr.-Ing. Jörg E. Drewes
Technical University of Munich, Chair of Urban Water Systems Engineering / TUM-SWW
Am Coulombwall 3
85748 Garching
Phone: +49 89 2891 3701 bzw. -3718
e-mail: jdrewes@tum.de

Partner institutions
» Technical University of Munich
» Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry / TUM-IWC
» Chair of Animal Physiology and Immunology / TUM-LTI
» Chair of Aquatic Systems Biology / TUM-LAS
» Assistant Professorship of Science and Technology Policy / TUM-MCTS
» Helmholtz Centre Munich, Institute of Groundwater Ecology / IGOE
» Bavarian State Office for the Environment / LFU
» Federal Environmental Agency / UBA
» Institute of Energy and Environmental Technology e. V. / IUTA
» Postnova Analytics GmbH
» BS-Partikel GmbH

Website
www.wasser.tum.de/en/submuetrack/startseite/

Short description
The methods currently available for the analysis of microplastics in environmental matrices are primarily designed for particles in the size range of 1 µm to 5 mm. Smaller particles below 1 µm have hardly been detected so far. However in contrast to larger particles, these are able to enter cells and have a higher potential for adsorption of pollutants due to their relatively larger surface. SubµTrack focuses on plastic particles between 50 nm and 100 µm, because of their higher ecotoxicological relevance. For this purpose, the previously available detection range has to be extended and new methods for sampling, sample preparation, and analysis have to be developed. Another focus of the project is the possible effects of submicroplastic particles on the aquatic environment and on human health. The results of these studies are complemented by an assessment of the social, political and legal dimensions of plastic emission into the environment. By analysing the perception of the problem and possible strategies for action, foundations are to be laid for active processes of social change. The results are also examined regarding to their implementation in legislation, standardisation, and their relevance for voluntary actions.

Main areas of work
» Characterisation of particles and comparison with reference materials
» Impact on the aquatic environment and human health
» Social, political and legal dimensions of plastic emission into the environment
Work packages

WP 0
Organisation, coordination and public relations

Contact persons
PD Dr. Thomas Letzel, PD Dr. Johanna Großmann, Technical University of Munich, Chair of Urban Water Systems Engineering, Am Coulombwall 3, 85748 Garching, e-mail: j.grassmann@tum.de

Project partners
TUM-IWC, TUM-LTI, TUM-LAS, TUM-MCTS, IGOE, LfU, UBA, IUTA, Postnova Analytics GmbH, BS-Partikel GmbH

Short description
In addition to the coordination of results and products within the consortium, WP 0 also includes the coordination of activities with partners outside the project. The goal is the sustainable implementation of the analytical techniques, the results and the instructions for action of harmonised strategies in close cooperation with national and international key institutions. The public relations work is mainly coordinated by TUM-SWW and effectively implemented by partners of different orientations.

WP 1
Selection and production of reference particles

Contact persons
Dr. Carmen Nickel, Dr. Jochen Türk, Institute of Energy and Environmental Technology e. V. (IUTA), Bliersheimer Str. 58–60, 47229 Duisburg, e-mail: nickel@iuta.de; tuerk@iuta.de

Project partners
LfU, BS-Partikel GmbH

Short description
Together with the partners of BS-Partikel and the leaders of the experimental WPs 2 – 5 the required reference particles are identified. In particular, the size, material, marking and the availability of the particles play an important role. The reference particles are selected during the initial phase of the project in order to have enough time to fabricate or purchase the particles at the beginning of the experiments. The project partners BS-Partikel and IUTA then provide the corresponding particles.

WP 2
Comprehensive analysis of microplastic particles

Contact persons
Prof. Dr. Martin Elsner, Dr. Natalia P. Ivleva, Technical University of Munich, Chair of Analytical Chemistry and Water Chemistry, Institute of Hydrochemistry, Marchionistrasse 17, 81377 Munich, e-mail: natalia.ivleva@ch.tum.de

Project partners
Postnova Analytics GmbH, BS-Partikel GmbH, TUMSWW, TUM-LTI, LfU, IUTA

Short description
Innovative and proven analytical detection methods (including sampling, preparation, identification and quantification) for microplastics [1 µm – 5 mm] are determined and tested with reference materials in the submicron range. The most successful techniques of the MiWa project running since 2016 serve as a starting point for this; standard methods from this project will be integrated and compared. Direct contact to actors of the MiWa project is guaranteed by partners of the consortium (TUM-IWC and UBA).

WP 3
Studies on aging, adsorption and desorption of organic trace substances on reference particles

Contact persons
PD Dr. Thomas Letzel, PD Dr. Johanna Großmann, Technische Universität München, Lehrstuhl für Siedlungswasserwirtschaft, Am Coulombwall 3, 85748 Garching, e-mail: j.grassmann@tum.de
Project partner
LfU

Short description
The particles used in the method validation are subjected to systematic aging processes and biofilm growth. Furthermore, these particles and especially their (resulting) different surfaces are examined regarding their adsorption or desorption characteristics of organic molecules. For this analysis, adsorption and desorption kinetics, among other things, will be investigated. This is done applying TD-[Pyrolysis]-GC-MS and LC-MS/MS are used. Experiments with the aged particles are carried out in so-called batch approaches, but also in laboratory wastewater treatment plants operated at the LfU. All samples are also stored in the biological systems from WP 5 if required.

WP 4
Investigations on entry points and process-related evaluation

Contact person
Dr. Korbinian Freier, Bavarian State Office for the Environment, Demollstraße 31, 82407 Wielenbach, e-mail: korbinian.freier@lfu.bayern.de

Project partners
TUM-SWW, IUTA

Short description
Using the methods developed and validated in WP 2, real scenarios are first simulated with reference particles in laboratory wastewater treatment plants at the partner LfU to analyse the fate of the particles within the system. Parallel to this, investigations will be carried out at various measuring points in real wastewater treatment plants. Water samples are certified by IUTA for micropollutants. The aim is to extend the existing sampling technologies to micropollutants. Finally, together with the other partners of the project and based on the expected results, a process-related evaluation will be carried out.

WP 5
Impact on aquatic environment and human health

Contact person
Prof. Dr. Michael Pfaffl, Technical University of Munich, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Chair of Animal Physiology and Immunology, Weihenstephaner Berg 3, 85354 Freising, e-mail: michael.pfaffl@wzw.tum.de

Project partners
TAM-LAS, IGOE

Short description
Potential negative effects of submicroparticles on different biological organisational levels will be investigated and compared to obtain a comprehensive ecotoxicological evaluation. This includes the use of model systems in vivo to determine effects on microbial diversity, communities and trophic structures and functions as well as to identify stress reactions on a higher organismic level. In vitro models extend this approach for the determination of effects on the cellular and molecular level. Based on this a mechanistic understanding of particle-induced stress reactions can be created and potential effects on human health are derived.

WP 6
Social, political and legal dimensions

Contact person
Prof. Dr. Ruth Müller, Technical University of Munich, Assistant Professorship of Science and Technology Policy, Augustenstraße 46, 80333 Munich, e-mail: ruth.mueller@tum.de

Project partner
UBA
At TUM-MCTS current problem perceptions and coping strategies in society and politics with regard to plastic particles in the environment are analysed by means of qualitative social scientific methods. The focus lies on the perception of the specific ecotoxicological relevance of submicroparticles. UBA carries out a screening of the relevant legal acts at national, European and intercontinental levels. The consideration goes beyond the pure media reference (water, soil and air) and the associated possible transport paths. In particular, the legally undefined range between nano- (limit: 100 nm) and microplastics (frequently stated limit: 1 µm) is of primary interest.

<table>
<thead>
<tr>
<th>Project partners</th>
<th>Main areas of work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical University of Munich</td>
<td></td>
</tr>
</tbody>
</table>
PD Dr. Thomas Letzel
PD Dr. Johanna Großmann
» Project coordination
» Analysis of particles and their adsorption and desorption properties (LC-MS/MS, TD-Pyrolysis-GC-MS)
» Entry points and process-related evaluation
» Analysis using Raman microspectroscopy (RM) or RM in combination with Flow Field Fractionation (FFF)
» Validation of the separation methods using SEM
» (Further) development of analytical procedures
» Cellular and molecular biological investigations
» Ultracentrifugation for the separation and concentration of nanoparticles and nanometry techniques
» Studies on effects at population and organism level (in vivo)
» Analysis of social and political dimensions
» Problem awareness, strategies for action and social dialogue (public engagement) |
| Helmholtz Centre Munich, Institute of Groundwater Ecology |
PD Dr. Christian Griebler
Dr. Yuxiang Zhou
» Investigation of the effect on microorganisms at the organisational and physiological levels |
| Bavarian State Office for the Environment |
Dr. Korbinian Freier
» Execution of tests in the laboratory wastewater treatment plant
» Analytics using FTIR |
| Federal Environmental Agency |
Dr. Claus Gerhard Bannick
Nathan Obermaier
» Evaluation of relevant legislative areas and standardisation projects for the implementation of measures for the reduction of submicroplastics
» Proposals for implementing the results in legislation, standardisation and voluntary commitments |
| Institute of Energy and Environmental Technology e. V. |
Dr. Carmen Nickel
Dr. Jochen Türk
Matin Funck
Bryan Hellack
» Sampling and nanometrology
» Measurements using Pyr-GC-MS, GC-MS/MS, LC-MS/MS and LC-HRMS |
| Postnova Analytics GmbH |
Dr. Florian Meier
Vanessa Sogne
» Support in fractionation and characterisation of submicroparticles
» Development of an online linking of FFF technology with RM |
| BS-Partikel GmbH |
Dr. Kyriakos Eslahian
Cornelia Hunger
» Provision and development of reference plastic particles of different sizes, chemical identities and markings
» Nanometry |
ResolVe

Recycling of Polystyrene by Raw Material Recovery

Coordinator

Dr. Hannes Kerschbaumer
INEOS Styrolution Group GmbH
Mainzer Landstraße 50
60325 Frankfurt am Main
Phone: +49 69 509550-1322
e-mail: hannes.kerschbaumer@ineos.com

Partner institutions

» INEOS Köln GmbH
» RWTH Aachen University
» Department of Processing and Recycling / I.A.R.
» Institute of Plastics Processing / IKV
» Neue Materialien Bayreuth GmbH / NMB

Short description

In view of climate change, environmental pollution, population growth, and resource dependency, the transition from a linear economy to a closed-loop economy is both ecologically and economically necessary. The aim of the ResolVe project is to develop a logistics and an industrial plant concept for the economic use of polystyrene waste as a raw material for high-quality new plastic products. Thermally-induced depolymerisation as material recycling of waste plastics can lead to the production of new polymers. In this process, the polymer is split thermally into low-molecular substances such as monomers and oligomers. In contrast to the conventional thermal recycling or material recycling of plastic waste, this project aims to actually close the loop. The depolymerisation process does not lead to the so-called “downcycling” of the recyclable materials. Since it places only moderate demands on the purity of the waste streams, many post-consumer waste streams can be used.

INEOS Styrolution manages the joint research project with the aim of using the styrene monomer, which is the main component of depolymerisation, in its own production process. To this end, the overall process is subjected to an intensive evaluation and the prerequisites for an investment are examined, too.
Main areas of work

» Logistical and economic evaluation
» Preconditioning in processing technology
» Depolymerisation of polystyrene wastes on a laboratory scale
» Depolymerisation of polystyrene in the twin screw extruder
» Distillative treatment
» Investigations into the influence of impurities on the depolymerisation process of polystyrene
» Utilisation of by-products through steam cracking

Work packages

WP 1
Project leadership

Contact person
Dr. Hannes Kerschbaumer, INEOS Styrolution Group GmbH, Mainzer Landstraße 50, 60325 Frankfurt am Main, e-mail: hannes.kerschbaumer@ineos.com

Short description
The successful implementation of the project requires a regular exchange of information between the partners and with the project management. The consortium consists of five partners and other subcontractors and thus requires careful management to ensure targeted and result-oriented cooperation. The individual tasks include: coordination of the project partners; thematic summaries of the developed results; reporting (including meeting minutes, milestone report and regular reports); organisation of project meetings and regular telephone conferences; organisation of the dispatch of hazardous substances between Aachen, Bayreuth and Cologne; and observation of parallel approaches to the raw material recycling of polystyrene.

WP 2
Procurement of waste samples and development of a recycling concept

Contact person
Prof. Dr. Thomas Pretz, RWTH Aachen University, Department of Processing and Recycling, Wülchnerstraße 2, 52056 Aachen, e-mail: pretz@ifa.rwth-aachen.de

Project partner
INEOS Styrolution

Short description
In dialogue with relevant waste disposal companies, the most important material flows are detected and samples procured. These are examined, processed and evaluated with regard to their suitability for chemical recycling. Specific logistics concepts are developed for these material flows so that a high recycling rate can be achieved. In addition, existing contacts with other research groups dealing with the collection of marine plastic waste are used. Other contacts are established to integrate the availability of material flows from the environment into the logistics concept.

WP 3
Depolymerisation of pure polystyrene granules with targeted variation of relevant material parameters

Contact person
Prof. Dr. Hans-Werner Schmidt, Neue Materialien Bayreuth GmbH, Gottlieb-Keim-Straße 60, 95448 Bayreuth, e-mail: hans-werner.schmidt@uni-bayreuth.de

Project partners
RWTH Aachen University IKV, INEOS Styrolution, INEOS Köln
Short description
The aim is to gain basic knowledge about the type of products resulting from the depolymerisation of polystyrene. For this purpose, depolymerisation is carried out on model substances on a laboratory scale. Parallel to this, a suitable extruder arrangement with separator is set up and depolymerisation is carried out in order to determine achievable yields and parameter influences. The reaction products are investigated by means of GC-MS. First experiments with real samples are carried out and the distillative separation of styrene is demonstrated. The by-products are evaluated for their suitability for the cracking process. The process parameters are optimised in both depolymerisation plants.

WP 4
Depolymerisation of pure polystyrene granules with targeted variation of relevant impurities

Contact person
Maximilian Adamy, RWTH Aachen University, Institute of Plastics Processing, Seffenter Weg 201, 52074 Aachen, e-mail: maximilian.adamy@ikv.rwthaachen.de

Project partners
RWTH Aachen University I.A.R., INEOS Styrolution, Neue Materialien Bayreuth

Short description
The material to be recycled generally contains a wide range of different impurities. These are characterised and their influence on the depolymerisation process of polystyrene will be investigated. Possible sources of polystyrene waste are: the polystyrene fraction from household waste (dual system), polystyrene from commercial waste collection, and samples of marine plastic waste. The next steps include: pre-sorting, conditioning of the waste, depolymerisation process in the piston and in the extruder, adaptation of the real samples to the optimum process conditions, and determination of the optimum operating mode depending on the material source.

WP 5
Fractionating distillation and utilisation of styrene monomers and by-products

Contact person
Dr. Ralf Gesthuisen, INEOS Köln GmbH, Alte Straße 201, 50769 Köln, e-mail: ralf.gesthuisen@ineos.com

Project partners
Neue Materialien Bayreuth, INEOS Styrolution

Short description
Depolymerisation does not produce a pure monomer stream, but rather a mixture of monomers, oligomers and other volatile components. For repolymerisation, the monomers must be separated from this mixture by fractionated distillation. Further fractions remain, which can be converted into recyclable substances by a suitable steam cracking process. The resulting products are examined qualitatively and quantitatively. Based on this, the cracking process is optimised by adjusting the process parameters and possibly adding naphtha and/or hydrogen.

WP 6
Economic and ecological considerations of the recycling concept

Contact person
Dr. Hannes Kerschbaumer, INEOS Styrolution Group GmbH, Mainzer Landstraße 50, 60325 Frankfurt am Main, e-mail: hannes.kerschbaumer@ineos.com

Project partner
RWTH Aachen University I.A.R.

Short description
The knowledge gained in the project is used to adapt the logistics concept developed in WP 2. The costs of the entire value chain, including collection
and recycling, are determined. The question of the location of a depolymerisation plant should have a major influence on the overall calculation: the provision of sufficient raw materials in terms of quantity and quality will show differences in their feasibility according to certain regions and countries. A special case takes into account whether collected plastic from the environment is also suitable for economic use. An ecological assessment (CO₂ footprint) of the depolymerisation will be carried out.

<table>
<thead>
<tr>
<th>Project partners</th>
<th>Main areas of work</th>
</tr>
</thead>
</table>
| INEOS Styrolution Group GmbH
Dr. Hannes Kerschbaumer | » Logistics and economic-ecological estimation
» Development of a logistics concept
» Economic and environmental evaluation of this concept |
| INEOS Köln GmbH
Dr. Ralf Gesthuisen | » Utilisation of the depolymerisation by-products in the steam cracking process |
| RWTH Aachen University, IKV
Maximilian Adamy | » Depolymerisation process
» Depolymerisation in a twin-screw extruder
» Removal of the resulting monomers by multi-stage degassing |
| RWTH Aachen University, I.A.R.
Prof. Dr. Thomas Pretz | » Pre-conditioning in processing technology |
| Neue Materialien Bayreuth GmbH
Prof. Dr. Hans-Werner Schmidt | » Depolymerisation process of polystyrene and distillative processing
» Investigation and optimisation of the depolymerisation of polystyrene waste on a laboratory scale
» Distillative treatment of the obtained fractions |
solvoPET

Development of a Recycling Technology for PET Waste Plastics from Multilayer Material and Other Waste Composites

Coordinator

Carsten Eichert
RITTEC Umwelttechnik GmbH
Feldstraße 29
21335 Lüneburg
Phone: +49 4131 - 408 55 44
e-mail: eichert@rittec.eu

Partner institutions

» Technical University of Braunschweig
» Institute for Chemical and Thermal Process Engineering / ICTV
» Institute of Machine Tools and Production Technology / IWF
» Fraunhofer Institute for Chemical Technology, Department of Environmental Engineering / ICT
» Reclay Materials GmbH
» SCHILLER Apparatebau GmbH
» VTU Engineering Deutschland GmbH

Website
https://solvopet.de/?lang=en

Short description

solvoPET aims to develop a solvolytic recycling process for materials made of PET [Polyethylene Terephthalate] in multilayer or mixed materials and to carry out experimental trials. Inactive patents for solvolysis of single-variety PET waste form the basis for this research: those solvolytic processes will be enhanced into a continuous waste treatment concept that can recycle PET waste. This enables the recycling of the PET materials present in the mixed waste and the separation of differing amounts of interfering substances, with the latter being redirected to other uses. The recycling process generates the basic components of PET: monoethylene glycol and terephthalic acid. The flexibility of the process enables sorting of waste from very inhomogenous materials sources such as marine and technical PET wastes. The new recycling process will be tested and evaluated in a pilot plant. The data from this testing is included into continuous economic and ecological assessments of the procedure and its integration into the value chain.
Main areas of work

- Development of the technical basis for continuous solvolysis
- Operation of the pilot plant for experimental development and technological protection of the solvolysis process
- Development of a mass and energy balances of the continuous processing methods (for pure and mixed PET waste)
- Development of a model-based tool for the analysis and assessment of environmental impacts
- Determination of market requirements with regard to recycling routes and required specifications for new streams of recyclable materials
- Opening up new sources of supply for PET waste composites from post-consumer collections and technical applications

Work packages

**WP 1
Basic research, process and apparatus design**

Contact person
Prof. Dr.-Ing. Stephan Scholl, Technical University of Braunschweig, Institute for Chemical and Thermal Process Engineering, Langer Kamp 7, 38106 Braunschweig,
e-mail: s.scholl@tu-braunschweig.de

Project partners
Fraunhofer ICT, Reclay Materials GmbH, RITTEC Umwelttechnik GmbH, SCHILLER Apparatebau GmbH, VTU Engineering Deutschland GmbH

Short description
The technical basis for continuous solvolysis of single-variety PET, multilayer PET and mixed PET is developed in WP 1. This includes laboratory tests of the critical process steps for dissolving, separating impurities, and purifying. The aim is to identify the required process functions, quantify advantageous processes and operating parameters and thus develop the main features of the continuous process. The data serve as a basis for the planning, design, construction and commissioning of a modular pilot plant, which enables investigations of different devices.

**WP 2
Pilot studies**

Contact person
Carsten Eichert, RITTEC Umwelttechnik GmbH, Feldstraße 29, 21335 Lüneburg,
e-mail: eichert@rittec.eu

Project partners
Fraunhofer ICT, TU Braunschweig ICTV, Reclay Materials GmbH, SCHILLER Apparatebau GmbH, VTU Engineering Deutschland GmbH

Short description
The central experimental design and technological validation of the solvolysis process takes place through the operation of the pilot plant. The process engineering solutions found in the basic investigations in WP 1 are implemented here. First, PET of a higher purity is processed. For this purpose, the continuous operation is represented. The final goal is the continuous operation of the pilot plant for mixed PET waste streams.
WP 3
Accounting and multi-criteria rating

Contact person
Prof. Dr.-Ing. Christoph Herrmann, Technical University of Braunschweig, Institute of Machine Tools and Production Technology, Langer Kamp 19B, 38106 Braunschweig, e-mail: c.herrmann@tu-braunschweig.de

Project partners
TU Braunschweig ICTV, RITTEC Umwelttechnik GmbH, Reclay Materials GmbH

Short description
The aim is to establish a closed and consistent mass and energy balance of the continuous processing method (for single-variety and mixed PET waste) parallel to the experimental development of the recycling process. This must first be created for the continuous operation of the pilot plant, compared with the operating data and then scaled to potential market scenarios. Based on the formulated requirements and the data from the pilot plant, a model-based tool for the analysis and evaluation of environmental impacts will be developed.

WP 4
Market analysis and technology implementation

Contact person
Carsten Eichert, RITTEC Umwelttechnik GmbH, Feldstraße 29, 21335 Lüneburg, e-mail: eichert@rittec.eu

Project partners
Fraunhofer ICT, TU Braunschweig ICTV, TU Braunschweig IWF, Reclay Materials GmbH, SCHILLER Apparatebau GmbH, VTU Engineering Deutschland GmbH

Short description
The market requirements with regard to recycling routes and required specifications for new streams of recyclable materials will be determined. By means of potential analysis, the proportion of recyclable technical waste in machine tools and industrial plants in Germany is also estimated. Based on this, new sources of supply for PET waste composites from post-consumer collections and technical applications will be developed. New potential partners for the implementation of the newly developed solvolysis process in the value chain and the new disposal channels will be identified.
<table>
<thead>
<tr>
<th>Project partners</th>
<th>Main areas of work</th>
</tr>
</thead>
</table>
| RITTEC Umwelttechnik GmbH
Carsten Eichert | » Overall concept, pilot plan operation and market launch |
| Reclay Materials GmbH
Mark Steiner | » Collection and sorting processes and integration of technology |
| SCHILLER Apparatebau GmbH
Andreas Schröder | » Development and construction of the special devices |
| VTU Engineering Deutschland GmbH
Thorsten Harnaut | » Basic and detail engineering, plant design |
| Technical University of Braunschweig | » Basic research (ICTV) |
| » Institute for Chemical and Thermal Process Engineering | » Process evaluation and global recycling streams (IMF) |
| » Institute of Machine Tools and Production Technology | |
|

Prof. Dr.-Ing Stephan Scholl
Prof. Dr.-Ing. Christoph Herrmann |
| Fraunhofer Institute for Chemical Technology
Dipl.-Ing. Jens Forberger | » Process development for separating, sorting, and processing PET waste composites |

MaReK

Marker-Based Sorting and Recycling System for Plastic Packaging

Coordinator
Prof. Dr.-Ing. Claus Lang-Koetz und Prof. Dr.-Ing. Jörg Woidasky,
Hochschule Pforzheim University, Institute of Industrial Ecology/ INEC
Tiefenbronner Straße 65
75175 Pforzheim
Phone: 07231/28-6427 bzw. -6489
e-mail: claus.lang-koetz@hs-pforzheim.de;
joerg.woidasky@hs-pforzheim.de

Partner institutions
» Polysecure GmbH
» Werner & Mertz GmbH
» Der Grüne Punkt – Duales System Deutschland GmbH
» Karlsruhe Institute of Technology, Institute of Microstructure Technology / KIT-IMT

Subcontractors:
» CMO-SYS GmbH
» Nägele Mechanik GmbH

Associated partners:
» Umwelttechnik BW GmbH, State Agency for Environmental Technology and Resource Efficiency Baden-Württemberg / UTBW

Website
www.hs-pforzheim.de/marek

Short description
The goal of this project is to set up a marker-based system for sorting and recycling that involves every stage from packaging development and sorting technology to high quality material reuse. The MaReK project demonstrates the usefulness of fluorescent markers for waste management applications. TBS technology, developed and patented by project partner Polysecure, will be piloted and tested in an industrially relevant context as a solution for the challenges of sorting Large Volume Parenterals (LVP) in particular. This will contribute to fulfilment of the requirement of the new packaging law that a higher proportion of waste be recycled. The project will investigate pace, effectiveness, and economic performance of sorting various waste constellations of waste collection under framework conditions applicable to industry. The project addresses the entire value chain of the packaging lifecycle – from design, to process development for marker application and sorting, to material reclamation. The results will lead to new approaches in packaging governance, which will be worked out with relevant stakeholders – together with the technical results of the project, these will serve as a basis for a more sustainable packaging use in the medium term.
Main areas of work

» Representative recycling of lightweight plastic packaging including determination of the technical residual value (material properties) and the added value potential

» New or further development and industrial testing of the "tracer-based sorting" method with real batches from separate collection [pilot plant], for this purpose further development of tracer and detection technology

» Applied innovation research for the investigation of drivers and obstacles of the developed technology and their application in the complex structure of stakeholders

» Comprehensive analysis of energy and material flows and an assessment of possible environmental impacts of the developed technology taking into account the life cycle perspective

Work packages

WP 1
Packaging design and supply

Contact person
Immo Sander, Werner & Mertz GmbH, Rheinallee 96, 55120 Mainz, e-mail: isander@werner-mertz.com

Project partners
Der Grüne Punkt – Duales System Deutschland, INEC – Pforzheim University, Polysecure

Short description
Development and provision of plastic packaging marked with markers from the non-food sector for the subsequent tests as well as the derivation of transferability potentials for further areas of application.

WP 2
Marker technology

Contact person
Prof. Dr. Bryce S. Richards, Karlsruhe Institute of Technology, Institute of Microstructure Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, e-mail: bryce.richards@kit.edu

Project partner
Polysecure

Short description
Adaptation of the fluorescence markers to the intended application.

WP 3
TBS sorting technology

Contact person
Jochen Moesslein, Polysecure GmbH, Engesserstr. 4a, 79108 Freiburg, e-mail: jochen.moesslein@polysecure.eu

Project partners
Der Grüne Punkt – Duales System Deutschland, INEC – Pforzheim University

Short description
Development of a TBS sorting machine for packaging including construction of a sorting pilot plant (sorting machine plus material feed and discharge as well as inline sensors).

WP 4
Sorting tests

Contact person
Stefan Wiethoff, Der Grüne Punkt – Duales System Deutschland GmbH, Frankfurter Straße 720–726, 51145 Köln (Porz-Eil), e-mail: stefan.wiethoff@gruener-punkt.de
MaReK

Project partners
INEC – Pforzheim University, Polysecure, Werner & Mertz

Short description
Large-scale validation tests including determination of the quality and material properties of the sorted fractions.

WP 5
Innovation and sustainability analysis

Contact person
Prof. Dr.-Ing. Claus Lang-Koetz, Pforzheim University, Institute of Industrial Ecology, Tiefenbronner Straße 65, 75175 Pforzheim, e-mail: claus.lang-koetz@hs-pforzheim.de

Project partners
With the cooperation of all partners

Short description
Development of an energy and material flow model (economic, ecological, technical) and determination of the ecological and economic framework conditions as well as drivers and obstacles for a successful process on the market.

WP 6
Development of governance approaches

Contact person
Prof. Dr.-Ing. Claus Lang-Koetz, Pforzheim University, Institute of Industrial Ecology, Tiefenbronner Straße 65, 75175 Pforzheim, e-mail: claus.lang-koetz@hs-pforzheim.de

Project partners
With the cooperation of all partners

Short description
Development of stakeholder-specific approaches to increase recycling rates and to improve material flow quality.

WP 7
Transfer of results and external impact

Contact person
Prof. Dr.-Ing. Jörg Woidasky, Pforzheim University, Institute of Industrial Ecology, Tiefenbronner Straße 65, 75175 Pforzheim, e-mail: joerg.woidasky@hs-pforzheim.de

Project partners
With the cooperation of all partners

Short description
Informing the public about the results.
<table>
<thead>
<tr>
<th>Project partners</th>
<th>Main areas of work</th>
</tr>
</thead>
</table>
| Pforzheim University, Institute of Industrial Ecology
Prof. Dr.-Ing. Claus Lang-Koetz, Prof. Dr.-Ing. Jörg Woidasky | » Innovation and sustainability analysis
» Studies on closed-loop economy |
| Polysecure GmbH
Jochen Moesslein | » Development of the sorting concept, synthesis of the fluorescence markers in cooperation with KIT, further development of the TBS sorting machine |
| Der Grüne Punkt – Duales System Deutschland GmbH
Stefan Wiethoff | » Cooperation in the development and implementation of marker placement, monitoring and evaluation of sorting tests |
| Karlsruhe Institute of Technology, Institute of Microstructure Technology
Prof. Dr. Bryce Richards | » Development and synthesis of new fluorescence markers, characterisation of the new materials and support for the detection concept in the sorting machine |
| Werner & Mertz GmbH
Immo Sander | » Development, testing and processing of suitable packaging |
Coordinator
Christoph Rasewsky
TECHNOLOG Services GmbH
Vorsetzen 50
20459 Hamburg
Phone: +49 40 7070768-06
e-mail: christoph.rasewsky@tlg-services.biz

Partner institutions
» Hochschule Bremen – City University of Applied Sciences, Institute for Energy, Recycling and Environmental Protection / IEKrW
» Nehlsen GmbH & Co. KG

Website
www.KuWert.hs-bremen.de

Short description
Since it is technically and economically impossible to reduce the amount of plastic waste in oceans, solutions to cut the entry of such substances into the environment must be developed. Developing countries, however, often lack land-based approaches to such solutions. Unused plastic waste actually represents a missed work and income opportunities in less-developed countries, particularly for less-educated people. Valuable plastic wastes usually enter into the environment in these areas, which in turn constitute a significant point of entry into the oceans. The goal of the project is to develop concepts and implementation planning of an infrastructure for recording, boat-based processing, and marketing of plastic wastes in order to reduce their entry into the environment and marine ecosystems. The programme targets less-developed countries, with an aim to create supply chains for trade and utilisation of plastic waste as well as to create added value for the people in the target countries. The programme targets the source of the problem and thus reduces entry of plastic waste into the ecosystem.
Main areas of work

» Data collection, analysis and evaluation (local conditions in less developed countries)
» Preliminary planning of waste treatment plants
» Design of a concept for suitable ship and plant technology
» Development of strategies for the implementation of value chains in less developed countries
» Analysis and evaluation of results (economic, ecological)

Work packages

WP 1
Basic evaluation – recording of plastic waste

Contact person
Dr. Martin Wittmaier, IEKrW, Neustadtswall 30, 28199 Bremen,
e-mail: wittmaier-office@hs-bremen.de

Project partners
TECHNOLOG, Nehlsen, University of Mauritius, University of Sierra Leone

Short description
It is of utmost importance for the processing of the entire project to gain knowledge of the composition of the plastic waste that potentially will be collected in less developed countries. To this end, data and information (types, qualities, quantities, framework conditions, logistics, etc.) are first collected, analysed and evaluated, including on site in the example countries Sierra Leone and Mauritius.

WP 2
Pre-design of a treatment and recovery plant

Contact person
Dr. Sven Rausch, Nehlsen GmbH & Co. KG, Wilhelm-Karmann-Str. 5, 28237 Bremen,
e-mail: sven.rausch@nehlsen.com

Project partners
TECHNOLOG, IEKrW, University of Mauritius, University of Sierra Leone

Short description
In this WP, waste treatment plants are to be planned in various variants. For this purpose, national and international framework conditions connected with the construction and operation of the ship-based facilities to be developed are determined. Various known procedures are evaluated and tested for their suitability, as are requirements for operation, maintenance and repair. On this basis, the objectives for the treatment of plastic waste are defined, followed by the development of conceptual designs.

WP 3
Concept development (ship and plant engineering)

Contact person
Christoph Rasewsky, TECHNOLOG, Vorsetzen 50, 20459 Hamburg,
e-mail: christoph.rasewsky@tlg-services.biz

Project partners
IEKrW, Nehlsen
Preliminary designs for up to three variants of carrier vessels/semi-submersibles for the treatment of plastic waste are developed with alternative ship-bound logistics concepts. Rough planning includes room planning and process-oriented arrangement of facilities, equipment for maritime technology, equipment for waste treatment plants, etc. The production costs and energy requirements are also determined and the variants are compared economically.

WP 4

Marketing potential of secondary raw materials

Contact person
Dr. Sven Rausch, Nehlsen GmbH & Co. KG, Wilhelm-Karmann-Straße 5, 28237 Bremen, e-mail: sven.rausch@nehlsen.com

Project partners
IEKrW, TECHNOLOG

Short description
The market for secondary raw materials is examined, since these are fundamentally valuable. Tradeable products from plastic waste are identified and the quality requirements to be met specified. Possible revenues will also be estimated. The resulting technical requirements for processing technology and quality management are taken into account in the other WPs. Based on the results, strategies for the most economical processing and marketing of products made from plastic waste are developed.

WP 5

Profitability analysis and life cycle assessment

Contact person
Dr. Martin Wittmaier, IEKrW, Neustadtswall 30, 28199 Bremen, e-mail: wittmaier-office@hs-bremen.de

Project partners
TECHNOLOG, Nehlsen

Short description
The concepts and preliminary planning for the ship-based collection, processing and marketing of plastic waste from less developed countries developed in the project are evaluated under economic and ecological aspects. On the basis of the results, the ecological advantages (reduction of the input of plastics into the environment, protection of resources by recycling plastic waste) are determined. The evaluation of the economic efficiency is intended to assess the chances of realisation and provide a planning framework for potential investors, funding providers and operators of a ship-based collection and treatment plant for plastic waste.

WP 6

Project management, public relations, recycling concept

Contact person
Christoph Rasewsky, TECHNOLOG Services GmbH, Vorsetzen 50, 20459 Hamburg, e-mail: Christoph.Rasewsky@tlg-services.biz
Project partners
IEKrW, Nehlsen

Short description
WP 6 covers work on internal and external communication (project meetings, workshops, communication between national and international partners including maintaining contacts with interested shipping companies/owners, public relations work etc.) and project management (administrative and content reporting, work and progress control and coordination etc.).

<table>
<thead>
<tr>
<th>Project partners</th>
<th>Main areas of work</th>
</tr>
</thead>
</table>
| TECHNOLOG Services GmbH
Christoph Rasewsky | » Design of a concept for suitable ship and plant technology including logistics concepts |
| Institute for Energy and Environmental Services at the University of Applied Sciences Bremen GmbH
Dr. Martin Wittmaier | » Development of strategies for the implementation of value chains in less developed countries
» Analysis and evaluation of results (economic, ecological) |
| Nehlsen GmbH & Co. KG
Dr. Sven Rausch | » Preliminary planning of waste treatment plants
» Marketing potential of secondary raw materials |
REPLAWA

Reduction of the Input of Plastics via Wastewater into the Aquatic Environment

Coordinator
Prof. Dr.-Ing. Holger Scheer
Emscher Wassertechnik GmbH
Brunnenstraße 37
45128 Essen
Phone: +49 201 3610-120
e-mail: scheer@ewlw.de

Partner institutions
» Technical University of Berlin, Department of Urban Water Management / TU Berlin FG Siwawi
» Technical University of Braunschweig, Institute of Sanitary and Environmental Engineering / ISWW
» Technical University of Braunschweig, Institute for Social Sciences / IB-ISW
» Nordic Water GmbH
» MARTIN Membrane Systems AG
» Lippeverband

Subcontractor:
» Mecana Umwelttechnik GmbH
» Stadtentwässerung Braunschweig GmbH

Website
www.replawa.de

Short description
The REPLAWA project covers questions of water resource protection in connection with wastewater treatment. The project will investigate and quantitatively assess entry points into water bodies through treatment plants, storm water drainage, and combined sewer overflows as well as swales at treatment facilities and in sewage sludge. It will test and rate various practical methods of reducing and eliminating plastic emissions into waterways during wastewater treatment. Based on the results of these investigations and of assessments regarding international regulatory approaches in this field, the project will derive strategies for reducing plastic release from wastewater treatment into waterways. Furthermore the sensitization of policymakers as well as plant operators to this problem is also relevant.

The pollutant in focus of this project is microplastic, which poses the greatest challenges to reach the project’s goals.

The expected results can be of immediate environmental and economic use, as they will spread technical expertise regarding the choice and integration of technologies suitable for retaining plastic in wastewater treatment. Relevant political and administrative decision makers will benefit from the inventory the project inherently provides and from suggested strategy developments of urban water management.
Main areas of work

» Further development and testing of suitable sampling, preparation and analysis methods for plastic particles in wastewater and sewage sludge

» Inventory and classification of discharges into water bodies via combined sewer overflows, precipitation water, sewage plant effluents and diffuse sources

» Inventory and balancing on large-scale wastewater treatment plants

» Evaluation and further development of various technical solutions for the separation of plastics during wastewater treatment by means of comparative tests

» Social science analysis and classification of wastewater-related regulatory proposals and measures worldwide

» Recommendations for action on strategy development in the field of urban water management and the associated regulation of plastic input

Work packages

WP 1
Sampling and analysis methods

Contact person
Prof. Dr.-Ing. Matthias Barjenbruch, Technical University of Berlin, Faculty VI – Planning Building Environment, Institute of Civil Engineering, Chair of Urban Water Management, Gustav-Meyer-Allee 25, 13355 Berlin, e-mail: matthias.barjenbruch@tu-berlin.de

Project partners
Emscher Wassertechnik, TU Braunschweig ISWW, Lippeverband

Short description
Definition and application of sampling and analysis methods, comprising i.a. the following tasks:

» Compilation of requirements for sampling, sample preparation and analysis for microplastic

» Selection of suitable analytical techniques for the joint research project

» Establishment of technical and personnel capacities at the Berlin location

» Definition of sampling and preparation methods for wastewater and sewage sludge

» Further development, validation of sampling and analysis

» Development of the methodical procedure for microplastic doping in separation investigations

WP 2
Inventory of entry points for plastics in water bodies

Contact person
Prof. Dr.-Ing. Holger Scheer, Emscher Wassertechnik GmbH, Brunnenstr. 37, 45128 Essen, e-mail: scheer@ewlw.de

Project partners
TU Berlin FG Siwawi, TU Braunschweig ISWW, Lippeverband, Stadtentwässerung Braunschweig GmbH
Short description
Inventory and evaluation of the pathways microplastic takes into water, agriculture and groundwater, which includes the following tasks:

» data collection, review and selection of appropriate river basin sections, groundwater bodies, and agricultural land
» definition of a detailed measurement and sampling programme
» representation and verification of discharges and boundary conditions
» sampling and analyses
» supplementary surveys and data evaluation with regard to wastewater input
» analysis of measured data, quantitative assessment of entry points, evaluation

WP 3
Inventory and balancing on large-scale wastewater treatment plants

Contact person
Prof. Dr.-Ing. Matthias Barjenbruch, Technical University of Berlin, Faculty VI - Planning Building Environment, Institute of Civil Engineering, Chair of Urban Water Management, Gustav-Meyer-Allee 25, 13355 Berlin, e-mail: matthias.barjenbruch@tu-berlin.de

Project partners
Emscher Wassertechnik, TU Braunschweig ISWW, Lippeverband, Stadtentwässerung Braunschweig GmbH

Short description
Investigation, evaluation and optimisation approaches for microplastic retention in large-scale wastewater treatment plants with the following individual tasks:

» Compilation of requirements for wastewater treatment plants with conventional activated sludge process and process with further solids retention
» Selection and coordination with large-scale plants
» Detailed recording of plant characteristics and boundary conditions
» Sampling and analyses
» Evaluation of measured data, balancing of material flows, evaluation
» Derivation of further requirements: technical and operational optimisation approaches for large-scale plants and for the semi-technical investigations (WP 4) with regard to the retention of microplastics
WP 4
Semi-technical investigations for the further development of technical solutions for the deposition of plastics

Contact person
Prof. Dr.-Ing. Norbert Dichtl, Technical University of Braunschweig, Institute of Sanitary and Environmental Engineering, Pockelsstraße 2a, 38106 Braunschweig, e-mail: n.dichtl@tu-braunschweig.de

Project partners

Short description
Evaluation and optimisation of the retention performance of microplastics in wastewater treatment plants by investigations on a semi-technical scale for the (downstream) filtration of wastewater and for sewage sludge digestion with doped microplastics. The following steps are carried out for this purpose:

» selection of plant technology for separation processes using membrane, cloth filter and sand filter
» setting up the test and measurement programme
» construction of semi-technical test facilities for comparative investigations at the Braunschweig site
» execution of the experimental operation, sampling and analyses
» technical and operational optimisation of the plants with regard to the retention of microplastics
» final evaluation and assessment of measurement data and plant operation

WP 5
Social science analysis of regulatory projects and measures worldwide

Contact person
Univ.-Prof. Dr. phil. habil. Anja P. Jakobi, Technical University of Braunschweig, Institute of Social Sciences, Chair of International Relations, Bienroder Weg 97, 38106 Braunschweig, e-mail: a.jakobi@tu-braunschweig.de

Project partners
Emscher Wassertechnik GmbH

Short description
Compilation of international regulatory concepts on microplastics in wastewater, with analysis of stakeholder interests, evaluation of political measures with regard to problem solving and compilation of political options for action in the field of urban water management.

» Interviews with national, European and global actors
» Networking with the other key actors of the research focus
» Analysis of stakeholder interests (state, private) and their effects on regulation (descriptive and causal)
» Causal analysis of regulatory results (qualitative and – depending on data quality – statistical)
» Evaluation of policy measures with regard to problem-solving
WP 6

Recommendations for action on strategy development in the field of urban water management

Contact person

Prof. Dr.-Ing. Holger Scheer, Emscher Wassertechnik GmbH, Brunnenstraße 37, 45128 Essen, e-mail: scheer@ewlw.de

Project partners

Short description

Elaboration of recommendations for strategy development regarding the evaluation and reduction of the input of microplastics via wastewater into the natural environment, including the classification of regulatory approaches:

- Recommendations for action on water discharges, rainwater treatment, and agricultural utilisation
- Description of technical possibilities for elimination and reduction in wastewater treatment plants, upgrading of wastewater treatment plants
- Upscaling of the results for different wastewater treatment plant size classes
- To show how regulatory approaches and changes can be initiated or influenced
- Development of further recommendations for action and information on the overall strategy development, including the results of the social science analyses

WP 7

Coordination of the joint research project

Contact person

Prof. Dr.-Ing. Holger Scheer, Emscher Wassertechnik GmbH, Brunnenstraße 37, 45128 Essen, e-mail: scheer@ewlw.de

Project partners

Short description

Technical and organisational coordination of the joint research project regarding result determination and support in disseminating findings.

Among other things, the following steps are carried out for this purpose:

- Technical coordination of cross-cutting topics
- Coordination with the accompanying project
- Organisation of project meetings and workshops overarching the research network
- Creation and implementation of a communication concept
- Support for the dissemination of results
- Tracking of time and work planning
<table>
<thead>
<tr>
<th>Project partners</th>
<th>Main areas of work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emscher Wassertechnik GmbH</td>
<td>» Engineering investigations and coordination of the joint research project</td>
</tr>
<tr>
<td>Prof. Dr.-Ing. Holger Scheer</td>
<td></td>
</tr>
<tr>
<td>with [subcontract as equipment supplier for</td>
<td></td>
</tr>
<tr>
<td>the pilot plant]: Mecana Umwelttechnik GmbH</td>
<td></td>
</tr>
<tr>
<td>Dr.-Ing. Ulrich Grabbe</td>
<td>» Cloth filter for separating microplastics in the wastewater treatment plant and in</td>
</tr>
<tr>
<td></td>
<td>mixed water overflows</td>
</tr>
<tr>
<td>TU Berlin, Department of Urban Water</td>
<td>» Sampling, analysis methodology and investigation of large-scale plants</td>
</tr>
<tr>
<td>Management</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr.-Ing. Matthias Barjenbruch</td>
<td></td>
</tr>
<tr>
<td>TU Braunschweig, ISWW</td>
<td>» Development of methods and semi-technical investigations for further microplastic</td>
</tr>
<tr>
<td>Prof. Dr.-Ing. Norbert Dichtl</td>
<td>elimination in wastewater treatment and sewage sludge treatment</td>
</tr>
<tr>
<td>with [provision of examination sites]:</td>
<td></td>
</tr>
<tr>
<td>Stadtentwässerung Braunschweig GmbH</td>
<td></td>
</tr>
<tr>
<td>Dipl.-Ing. Andreas Hartmann</td>
<td></td>
</tr>
<tr>
<td>TU Braunschweig, IB-ISW</td>
<td>» Social science analysis of regulatory proposals and measures worldwide</td>
</tr>
<tr>
<td>Univ.-Prof. Dr. phil. habil. Anja P. Jakobi</td>
<td></td>
</tr>
<tr>
<td>Nordic Water GmbH</td>
<td>» Sand filters and microsieves for the separation of microplastics</td>
</tr>
<tr>
<td>Andreas Sack</td>
<td></td>
</tr>
<tr>
<td>MARTIN Membrane Systems AG</td>
<td>» Use of membrane technology for the separation of microplastics</td>
</tr>
<tr>
<td>Dipl.-Kfm. Daniel Crawford</td>
<td></td>
</tr>
<tr>
<td>Lipperverband</td>
<td>» Investigations on plastic emissions into water and from wastewater sewage treatment</td>
</tr>
<tr>
<td>Dr.-Ing. Issa Nafo</td>
<td>plants</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EmiStop

Identification of Industrial Plastic Emissions by Means of Innovative Detection Methods and Technology Development to Prevent the Input into the Environment via the Wastewater Pathway

Coordinator
Dr.-Ing. Eva Gilbert
EnviroChemie GmbH
In den Leppsteinswiesen 9
64380 Rossdorf
Phone: +49 6154-6998-57
e-mail: eva.gilbert@envirochemie.com

Partner institutions
» Technical University of Darmstadt, Institute IWAR, Department of Wastewater Engineering
» Technical University of Darmstadt, Institute IWAR, Department of Wastewater Technology
» RheinMain University, Institute for Environmental and Process Engineering / HSRM
» inter 3 GmbH-Institute for Resource Management
» BS-Partikel GmbH

Website
www.emistop.de/page8.html

Short description
This project systematically detects emissions of plastics into wastewater from relevant industries. Emissions levels will be analysed along all points of the value chain (production, transport, processing, and cleaning of synthetic materials).

The goal is to select wastewater treatment technologies that will optimise reduction of emissions of plastics for the respective value chain. The project will evaluate existing technologies for separating particles, investigate deposition rates, and develop approaches for technical optimisation. Optimisation also includes technological developments such as flocculants. Researchers will conduct tests in both laboratory and pilot project settings – selected large scale technical wastewater treatment plants will be investigated at industrial facilities.

Due to the existing analytical uncertainties, the following detection methods are used to evaluate the existing and developed technologies:
» Dynamic differential calometry for qualification and quantification (concentrations)
» Raman spectroscopy for qualification and quantification (particle numbers)
» Correlations of the plastic concentrations to routine water chemical analyses (for a retrospective estimation of the plastic loads)
» Tracer test with magnetic plastic particles (simple and reliable quantification in large dilutions) for balancing in laboratory and pilot tests
Apart from the technical aspects, the focus of this project is also on socio-economic aspects. Thus, measures to prevent economic losses and retain value will be reviewed together with the associated industrial enterprises and evaluated with partners from the scientific community and other interest groups.

Main areas of work

» Standardisation of sampling and sample preparation for industrial wastewater (in alignment with Plastik-Net and other joint research projects)

» Quantitative and qualitative measurement of plastic concentrations in industrial wastewater using Raman spectroscopy and dynamic differential calorimetry

» Extended data collection at the sampled industrial waste water treatment plants for the derivation of the plastic loads and testing of a correlation between the measurement results and routine water chemical analyses

» Development of magnetic plastic particles in the micrometre range with the physical properties of relevant types of plastic

» Development of a tracer test with magnetic plastic particles

» Assessment of technologies for particle separation with regard to the retention of (micro-) plastic particles

» Optimisation of particle separation technologies

» Development of flocculants for the targeted improvement of the retention of individual types of plastics and their mixtures

» Delphi surveys of industry and sector associations as well as of politics and science to identify perceived risks and obstacles as well as opportunities and the willingness to participate

» Multi-criteria analysis for the development of weighted, ecological and socio-economic criteria for the sustainability assessment of the project results

Work packages

WP 1

Development of analytical methods for plastic particles

Contact persons

Prof. Dr. Jutta Kerpen, RheinMain University, Institute for Environmental and Process Engineering, Department of Wastewater Treatment, Am Brückweg 26, 65428 Rüsselsheim, e-mail: jutta.kerpen@hs-rm.de

Prof. Dr. Susanne Lackner, Technical University of Darmstadt, Institute IWAR, Department of Wastewater Engineering, Franziska-Braun-Straße 7, 64287 Darmstadt, e-mail: s.lackner@iwar.tu-darmstadt.de

Prof. Dr.-Ing. Markus Engelhart, Technical University of Darmstadt, Institute IWAR, Department of Wastewater Technology, Franziska-Braun-Straße 7, 64287 Darmstadt, e-mail: m.engelhart@iwar.tudarmstadt.de

Project partner

EnviroChemie

Short description

A routinely applicable sampling and sample preparation procedure will be developed in order to create a uniform and comparable database for industrial wastewater. For the subsequent qualification and quantification of microplastics in (industrial) wastewater samples, the methods of dynamic differential calorimetry and Raman spectroscopy are adapted to industrial wastewater. The respective analysis results will be compared with standardised routine measurements and operational self-analysis to determine correlations.
WP 2
Tracer test

Contact persons
Prof. Dr. Susanne Lackner,
Technical University of Darmstadt, Institute IWAR, Department of Wastewater Engineering,
Franziska-Braun-Straße 7, 64287 Darmstadt,
e-mail: s.lackner@iwarnudarmstadt.de
Dr. Kyriakos Eslahian,
BS-Partikel GmbH,
Nestléstr. 41, 55120 Mainz,
e-mail: eslahian@bs-partikel.de

Short description
In order to balance individual process technologies for plastic particle retention in real water matrices, a method for the quantification of magnetic plastic particles by means of magnetic susceptibility scales is established. For this purpose, particles in the size range from 1 µm to 300 µm are synthesised with the greatest possible magnetic susceptibility, which imitate the morphologies and chemical properties of environmental plastic particles.

Furthermore, a continuous method for the production of these particles is established in order to ensure the best possible reproducibility and scalability for subsequent applications.

WP 3
Identification of industrial entry points

Contact persons
Prof. Dr. Jutta Kerpen,
RheinMain University, Institute for Environmental and Process Engineering, Department of Wastewater Treatment,
Am Brückweg 26, 65428 Rüsselsheim,
e-mail: jutta.kerpen@hs-rm.de

Prof. Dr. Susanne Lackner,
Technical University of Darmstadt, Institute IWAR, Department of Wastewater Engineering,
Franziska-Braun-Straße 7, 64287 Darmstadt,
e-mail: s.lackner@iwarnudarmstadt.de
Prof. Dr.-Ing. Markus Engelhart,
Technical University of Darmstadt, Institute IWAR, Department of Wastewater Technology,
Franziska-Braun-Straße 7, 64287 Darmstadt,
e-mail: m.engelhart@iwarnudarmstadt.de

Project partners
EnviroChemie, inter 3

Short description
The entry points of microplastics from industrial wastewater into surface waters are determined by uniform characterisation and quantification of the plastic emissions of individual industrial plants. The evaluation of plastic emissions on the basis of mass flows, variations and production information with key figure system and balance tools, hotspots and temporal variations of the particle input are identified.

WP 4
Balancing of technical systems

Contact persons
Dr.-Ing. Eva Gilbert, EnviroChemie GmbH, F&E,
In den Leppsteinswiesen 9, 64380 Rossdorf,
e-mail: eva.gilbert@envirochemie.com
Prof. Dr.-Ing. Markus Engelhart,
Technical University of Darmstadt, Institute IWAR, Department of Wastewater Technology,
Franziska-Braun-Straße 7, 64287 Darmstadt,
e-mail: m.engelhart@iwarnudarmstadt.de

Project partners
TU-AW, inter 3, HSRM
Short description
In laboratory and pilot tests, various process techniques (filtration in various filter units such as membrane plants, double-layer filters, cloth filters; flocculation in combination with filtration, flotation or sedimentation) are evaluated with regard to plastic particle removal. For this purpose, the tracer particles developed in WP 2 are used, which enable the use of synthetic and real industrial waste water. Furthermore, the existing industrial process technology is evaluated at one or two industrial sites and, if possible, optimised with regard to the separation of plastic particles.

WP 5
Optimisation of plastic retention

Contact persons
Dr.-Ing. Eva Gilbert, EnviroChemie GmbH, F&E, In den Leppsteinswiesen 9, 64380 Rossdorf, e-mail: eva.gilbert@envirochemie.com
Prof. Dr.-Ing. Markus Engelhart, Technical University of Darmstadt, Institute IWAR, Department of Wastewater Technology, Franziska-Braun-Straße 7, 64287 Darmstadt, e-mail: m.engelhart@iwar.tudarmstadt.de

Project partners
TU-AW

Short description
Based on the results of WP 4, the pilot plants are adapted by specific design changes (e.g. flow control, sludge removal, conveyor technology) and the success of these optimisations is evaluated in further balancing experiments.

For the industries considered, in addition to constructive optimisation of process engineering, production-integrated measures to reduce plastic emissions are derived. The production information collected in WP 3 serves as the basis for this.

WP 6
Development of flocculants for plastics sorts

Contact persons
Dr.-Ing. Eva Gilbert, EnviroChemie GmbH, F&E, In den Leppsteinswiesen 9, 64380 Rossdorf, e-mail: eva.gilbert@envirochemie.com

Project partners
TU-AT, TU-AW

Short description
In experiments with beakers, individual polymers for the targeted flocculation of particles of different types of plastic in the size range from 10 to 300 µm are tested. The results are used to test specific blends of polymers and, if necessary, to develop new polymers to produce the most stable flakes of particles of individual plastic types. With these results, the tests and developments are extended to mixtures of different types of plastics.

The laboratory test results will then be supplemented by pilot tests using tracer particles developed in WP 2.
WP 7
Risk and potential analysis

Contact person
Dipl.-Ing. Wolf Raber, inter 3 GmbH - Institute for Resource Management, Otto-Suhr-Allee 59, 10585 Berlin, e-mail: raber@inter3.de

Project partners
TU-AT, TU-AW, EnviroChemie, HSRM, BS-Partikel

Short description
To maximise the broad application of the EmiStop optimisation approaches and avoidance strategies, the risks and potentials are identified from the perspective of the key actors, evaluated and fed into the project at an early degree of technology maturity.

Furthermore, an expert-supported set of socio-political, economic, and ecological evaluation criteria and a meaningful set of indicators are derived in order to analyse and evaluate the multicriterial optimisation approaches and avoidance strategies and in a next step measures for implementation and diffusion.

WP 8
Management and communication

Contact persons
Dr.-Ing. Eva Gilbert, EnviroChemie GmbH, F&E, In den Leppsteinswiesen 9, 64380 Rossdorf, e-mail: eva.gilbert@envirochemie.com
Dr. Anja Steglich, inter 3 GmbH - Institute for Resource Management, 10585 Berlin, e-mail: steglich@inter3.de

Project partners
TU-AT, TU-AW, HSRM, BS-Partikel

Short description
In order to disseminate and implement the project results, industrial companies are actively involved and dialogue is carried out with experts from relevant industry associations (e.g. PlasticsEurope e.V., IK Industrievereinigung Plastikverpackungen e.V., GKV Gesamtverband Plastikverarbeitende Industrie e.V.). The collaboration is to be commissioned to a) develop the results into a consensual overall perspective, b) prepare these into action-oriented and implementable guidelines and c) make them available via established channels and multipliers, e.g. the Responsible Care Initiative of the chemical industry.

<table>
<thead>
<tr>
<th>Project partners</th>
<th>Main areas of work</th>
</tr>
</thead>
<tbody>
<tr>
<td>EnviroChemie GmbH</td>
<td>» Assessment and optimisation of technologies for particle separation with regard to the retention of [micro-] plastic particles</td>
</tr>
<tr>
<td>Dr.-Ing. Eva Gilbert</td>
<td>» Development of flocculants for the targeted improvement of the retention of individual types of plastics and their mixtures</td>
</tr>
<tr>
<td>Institution</td>
<td>Collaborators</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
| Technical University of Darmstadt, Institute IWAR, Department of Wastewater Engineering | Prof. Dr. Susanne Lackner
- Quantitative and qualitative measurement of plastic concentrations in industrial wastewater using dynamic differential calorimetry
- Development of a tracer test with magnetic plastic particles |
| Technical University of Darmstadt, Institute IWAR, Department of Wastewater Technology | Prof. Dr.-Ing. Markus Engelhart
- Assessment of technologies for particle separation with regard to the retention of (micro-) plastic particles
- Extended data collection to derive the plastic loads and check a correlation of the measurement results with routine hydrochemical analyses. |
| RheinMain University, Institute for Environmental and Process Engineering, Department of Wastewater Treatment | Prof. Dr. Jutta Kerpen
- Standardisation of sampling and sample preparation for industrial wastewater (in alignment with PlastikNet and other joint research projects)
- Quantitative and qualitative detection of micro-plastic particles in industrial wastewater using Raman spectroscopy |
| inter 3 GmbH - Institute for Resource Management | Dipl.-Ing. Wolf Raber
- Delphi surveys of industry and industry associations as well as of politics and science to identify perceived risks and obstacles as well as opportunities and willingness to participate
- Multi-criteria analysis for the development of weighted ecological and socio-economic criteria for the sustainability assessment of the project results |
| BS-Partikel GmbH | Dr. Kyriakos Eslahian
- Development of magnetic plastic particles in the micrometre range with the physical properties of relevant types of plastic |
MikroPlaTaS

Microplastics in Dams and Reservoirs: Sedimentation, Spread, Effects

Coordinator
PD Dr. Katrin Wendt-Potthoff
Helmholtz Centre for Environmental Research – UFZ, Department of Lake Research
Brückstraße 3a
39114 Magdeburg
Phone: +49 391 8109810
e-mail: katrin.wendt-potthoff@ufz.de

Partner institutions
» University of Münster / WWU
» University of Potsdam / UP
« Bielefeld University
» Ecossa Institute for Water Protection
Mesocosm GmbH

Website
www.uni-muenster.de/
Mikroplatas/en/index.html

Short description
The spread of microplastics in rivers shows that along a given waterway there are sources as well as sinks. Thus, dams and reservoirs constitute important but until now hardly investigated parts of a water system that serve as examples for risk vs. usefulness of sedimentation of microplastics. Biofilms, which grow on microplastics, have a special significance for their transport and sedimentation. The goals of this project are (I) to identify and characterise microplastic in water and sediment, (II) to understand how biofilms form on plastic and how sedimentation occurs on these grown-over particles, (III) to record how microplastics affect and are taken up by individual organisms as well as by entire communities in model ecosystems, and (IV) to synthesise the scientific results and draft practical recommendations based on them. This synthesis should emphasise identifying pathways to eliminate microplastics and to derive practical measures and risk assessments together with the project partners.

Main areas of work
» Distribution and sedimentation of microplastics and fauna in situ
» Characterisation of microplastics with regard to biofilm communities and sedimentation mechanisms
» Direct effects of microplastic on invertebrate species and complex biocenoses
» Influence of plastics on the food quality of biofilms for Grazer
Work packages

WP 1
Survey plastics and meio- and microfauna in dams and reservoirs

Contact person
PD Dr. Katrin Wendt-Potthoff, UFZ, Department of Lake Research, Brückstraße 3a, 39114 Magdeburg, e-mail: katrin.wendt-potthoff@ufz.de

Project partners
WWU, Bielefeld University

Short description
The aim is to estimate the contamination of various dammed waters with microplastics, to identify the relevant polymers and to determine the respective typical macro- and meiofauna. The service water reservoirs Bautzen, Quitzdorf and Malter in Saxony as well as the dammed Ems, the Lippe and the former Rieselfelder Münster in North Rhine-Westphalia are adhesive investigated.

WP 2
In situ experiments on sedimentation rates and settlement

Contact person
PD Dr. Katrin Wendt-Potthoff, UFZ, Department of Lake Research, Brückstraße 3a, 39114 Magdeburg, e-mail: katrin.wendt-potthoff@ufz.de

Project partners
WWU, Bielefeld University

Short description
The aim is to determine field sedimentation rates in the course of a year with regard to total mass and microplastics. For this purpose, sediment traps are applied to the deepest points of the waters, at minimum, and evaluated monthly with regard to the total mass of plastics and organisms of the meiofauna. As a result, a relationship is established between plastic load in the water column, total sedimentation rate and plastic sedimentation rate.

WP 3
Characterisation of biofilms on different polymers

Contact person
Prof. Dr. Bodo Philipp, University of Münster, Institute of Molecular Microbiology and Biotechnology, Corrensstraße 3, 48149 Münster, e-mail: bodo.philipp@uni-muenster.de

Project partners
UFZ, UP, Bielefeld University

Short description
In this work package, the microbial communities on plastic particles are examined with regard to taxonomic composition and function in order to derive hypotheses on processes at the sites that can be checked in WPs 4 – 6. Particular attention is paid to whether there is a characteristic microflora on microplastic particles and whether individual types of plastic differ. Furthermore, mechanisms of biofilm formation on microplastic particles shall be explained. Cultivation-dependent and -independent investigations are carried out with samples from WP 1 and WP 2 and later with mesocosmic samples (WP 5). A collection of strains is to be generated in the first project year so that it can be used for WP 5 and WP 6.

WP 4
Influence of biofilm colonisation, light and redox processes on microplastic sedimentation

Contact person
PD Dr. Katrin Wendt-Potthoff, UFZ, Department of Lake Research, Brückstraße 3a, 39114 Magdeburg, e-mail: katrin.wendt-potthoff@ufz.de

Project partners
WWU, Bielefeld University
Experiments under controlled conditions shall determine how light and redox ratios (concentration of O₂ and iron) influence the sedimentation of plastic particles either directly or by controlling colonisation. The influence of these factors on sedimentation is studied to simulate the transition from pelagic to benthic habitat. To what extent light or darkness and oxic or anoxic conditions per se, but also their change, can control the sinking behaviour of plastic particles must be determined.

WP 5
Direct effect of plastic particles on invertebrates

Contact person
Prof. Dr. Walter Traunspurger,
Bielefeld University, Department of Animal Ecology,
Konsequenz 45, 33615 Bielefeld,
e-mail: traunspurger@uni-bielefeld.de

Project partners
WWU, UP, Ecossa, Mesocosm

Short description
The uptake and effect of microplastics for aquatic organisms is going to be tested in experimental systems (single-species to model ecosystems) to assess risks for pelagic and benthic fauna. A harmful effect in the organism requires an uptake into the body, either through the ingestion of the particles themselves or through transfer in the food chain (biomagnification). In case of harmful effects, indirect effects (top-down, bottom-up) can occur and thus affect organisms not directly affected by microplastic. In order to evaluate the food web as fully as possible, experiments with increasing ecological complexity and relevance are planned for pelagic and benthic invertebrates to elucidate the effect on organisms, populations and communities and to reduce the interpretation gap between laboratory and field results.

WP 6
Influence of plastics on the food quality of biofilm for meio and macro grazers

Contact person
Dr. Friederike Gabel, University of Münster,
Institute of Landscape Ecology, Heisenbergstraße 2,
48149 Münster, e-mail: gabelf@uni-muenster.de

Project partners
UP, Bielefeld University, UFZ

Short description
The aim of this WP is to identify indirect effects of microplastic on meio and macrofauna organisms by influencing the nutritional basis. Biofilms (especially bacteria, fungi, protozoa) form an important food basis for meio and macrofauna in waters. The quality of these biofilms can therefore have a significant influence on the composition and vitality of the organisms grazing them. For grazing experiments, macro invertebrates are offered different overgrown plastic strips for grazing. Ingestion and excretion rates, growth and, in the case of snails, the reproduction of organisms are investigated.

WP 7
Coordination, public relations, knowledge transfer

Contact person
Dr. Friederike Gabel, University of Münster,
Institute of Landscape Ecology, Heisenbergstraße 2,
48149 Münster, e-mail: gabelf@uni-muenster.de
PD Dr. Katrin Wendt-Potthoff, UFZ, Department of Lake Research, Brückstraße 3a, 39114 Magdeburg, e-mail: katrin.wendt-potthoff@ufz.de

Project partners
UP, Bielefeld University, Ecossa, Mesocosm
Short description

The aim is to communicate project results to specific target groups both within the consortium and to the general public (children, students, authorities and scientists).

The practical partners (The State Reservoir Administration of Saxony, Lower Water and Landscape Authority of the City of Hamm, Academy of nature and Environmental Protection NRW) play an important role here. It is expected that the multiplier effect of the addressed target groups will promote the project results and the topic of plastics in the environment and that this sensitisation will create a broader acceptance for the recommendations for action that arise from the project as a synthesis product.

<table>
<thead>
<tr>
<th>Project partners</th>
<th>Main areas of work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helmholtz-Centre for Environmental Research – UFZ
PD Dr. Katrin Wendt-Potthoff</td>
<td>» Distribution of microplastic in waters
» Biofilm growth and sedimentation processes of microplastic</td>
</tr>
<tr>
<td>University of Münster
Prof. Dr. Bodo Philipp
Dr. Friederike Gabel</td>
<td>» Taxonomy and physiology of biofilm organisms
» Distribution of plastics in water and effect on benthic grazer</td>
</tr>
<tr>
<td>University of Potsdam
PD Dr. Guntram Weithoff</td>
<td>» Effect of microplastic on planktonic organisms and biocenoses</td>
</tr>
<tr>
<td>Bielefeld University
Prof. Dr. Walter Traunspurger</td>
<td>» Ecology and taxonomy of nematodes and other meiofauna
» Spectroscopic analysis of microplastic in meiofauna</td>
</tr>
<tr>
<td>Ecossa
Dr. Sebastian Höss</td>
<td>» Impact and toxicity tests with meiofauna and sediments
» Indirect food web effects on meiobenthos</td>
</tr>
<tr>
<td>Institute for Water Protection Mesocosm GmbH
Prof. Dr. Klaus Peter Ebke</td>
<td>» Impact and toxicity tests with meiofauna and sediments
» Indirect food web effects on meiobenthos</td>
</tr>
</tbody>
</table>
MicBin

Microplastics in Inland Waters – Investigation and Modeling of Entries and Whereabouts in the Danube Area as a Basis for Action Planning

Coordinator
Dr. Nicole Zumbülte
DVGW Deutscher Verein des Gas- und Wasserfaches e. V. – Technisch-wissenschaftlicher Verein – Bonn
TZW: DVGW-Water Technology Centre, Analysis and Water Quality Department
Karlsruher Straße 84
76139 Karlsruhe
Phone: +49 721-9678 139
e-mail: nicole.zumbuelte@tzw.de

Partner institutions
» German Federal Institute of Hydrology [BfG] / BfG
» DVGW-Technologiezentrum Wasser / TZW
» Cologne Technical University, STEPs / THK
» BKV GmbH / BKV
» Bavarian State Office for the Environment / LfU
» University of Augsburg / UniA
» Osnabrück University / UOS

Website
www.micbin.de

Short description
The goal of this project is to achieve a first-ever accounting of macro-, meso- and microplastics released into the German part of the Danube river basin, with measuring stations at its main tributaries. Microplastic particles (particles < 5 mm) are examined by using various, complementary analytical methods. The focus lies on specifically small particles that are invisible to the naked eye with diameters less than 300 µm as there is currently a distinct lack of data about these particles. This project is mapping the sources, sinks, transport processes and fragmentation of plastics in separate material flow models for micro- and macroplastics. Targeted, standardised sampling and supplementary laboratory experiments are clarifying the relevance of previously neglected input paths such as agricultural land or atmospheric deposition. Results will be implemented into existing models, the models will be validated and a plastic balance for the German Danube watershed will be prepared. Through scenario analyses, the identification of measures to reduce plastic pollution at the level of entire river basins is possible.

Main areas of work
» Entry balancing of macro-, meso- and particularly microplastic in the German Danube river basin through uniform sampling campaigns, modelling and supplementary laboratory tests
» Balancing of previously unconsidered sources and sinks, such as the input of plastic by agriculture, atmospheric deposition of microplastic and degradation processes of plastics in the environment
» Derivation of minimisation strategies
Work packages

WP 1
Coordination

Contact person
Dr. Nicole Zumbülte, TZW: DVGW Water Technology Centre, Analysis and Water Quality department, Karlsruher Straße 84, 76139 Karlsruhe, e-mail: nicole.zumbuelte@tzw.de

Project partners
UOS, UniA, BfG, THK, LfU, BKV

Short description
The TZW is responsible for the scientific and general internal coordination within the project, ensures the exchange of information between the internal and external partners and research networks. This includes the preparation of a cooperation agreement between the partners, the organisation of sampling campaigns and sample distribution to the individual partners, the coordination of sample analysis, the organisation of project meetings for exchange between the partners and the maintenance of scientific exchange with other projects at national and international levels.

WP 2
Analysis of plastics in environmental samples

Contact person
Prof. Dr. Thomas Ternes, German Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz, e-mail: ternes@bafg.de

Project partners
LfU, TZW, UOS

Short description
In this work package, the samples from WP 3 and WP 4 are analysed using three complementary methods. Starting from a high sample volume, these are pre-selected in advance by BfG using an effective screening procedure (low sample preparation effort, sample analysis using pyrolysis gas chromatography coupled with mass spectrometry). Samples with contents above a threshold value to be defined are subjected to a much more complex and precise analysis using Raman (TZW) and IR spectroscopy (LfU). These processes provide detailed information on particle properties (concentration, size, polymer type, and shape).

WP 3
Identification of entries / sources

Contact person
Dr. Korbinian Freier, Bavarian State Office for the Environment, Demollstr. 31, 82407 Wielenbach, e-mail: korbinian.freier@lfu.bayern.de

Project partners
THK, BKV, UOS

Short description
The first step in mass balancing of the selective and diffuse input of microplastics requires a characterisation of all potential sources. The aim of WP 3 is therefore to investigate and quantify entries from points and areas in limnic systems. The results are incorporated in WP 5. The focus is on atmospheric deposition, linear inputs in connection with littering, wastewater treatment plants, landfill leachates, and the weathering of plastics.

WP 4
Transport, distribution and fate: Process understanding of water, soil, air

Contact person
Prof. Dr. Thomas Ternes, German Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz, e-mail: ternes@bafg.de

Project partners
BKV, LfU, UniA, TZW, UOS, THK
MicBin

Short description
In addition to sinks such as hydroelectric power plants, this WP will look at transport and relocation processes of microplastics and possible intermediate reservoirs for microplastics such as soils or water sections with low flow. In addition, degradation and comminution processes of plastics are investigated in laboratory experiments. Sinks or reservoirs for microplastics are identified by coordinated sampling in the water body and mass balancing of a water body section. The results of WP 4 are incorporated into the models of WP 5.

WP 5
Drawing up balance sheets by modelling and deriving measures

Contact person
Dr. Jörg Klasmeier, Osnabrück University, Institute of Environmental Systems Research, Barbarastraße 12, 49078 Osnabrück, e-mail: jkласmei@uos.de

Project partners
LfU, UniA, BKV, TZW

Short description
Entries in water bodies are accounted for considering the various sources and sinks and allowing for an estimation of the total freight in the Danube River System. Process-oriented small to medium scale models for microplastic (UniA, UOS) and supra-regional models for micro-, meso- and macroplastic (BKV) are fed with the experimental data and existing data on wastewater treatment plants (LfU, UOS) obtained in the various work packages. From the results of all work packages, a summary evaluation of the sources and sinks with recommendations for measures to reduce water pollution is carried out.

WP 6
Communication

Contact person
Dr. Nicole Zumbülte, TZW: DVGW Water Technology Centre, Analysis and Water Quality Department, Karlruher Straße 84, 76139 Karlsruhe, e-mail: nicole.zumbuelte@tzw.de

Project partners
LfU, THK

Short description
The MicBin project homepage informs about project contents, actions and results. In addition, a short film will be produced and made available to the public. The public will be made aware of this issue through a waste collection campaign on the water and participation in the German Sustainability Action Days (DAN). Stakeholders from research, authorities and industry will be informed and involved in workshops.
Case Studies

The MicBin project focuses on balancing the input of macro-, meso- and particularly microplastics for the German Danube river basin with measurement campaigns at the main Danube tributaries. Among other things, agricultural entries as well as transport and relocation processes are also taken into account.

<table>
<thead>
<tr>
<th>Project partners</th>
<th>Main areas of work</th>
</tr>
</thead>
</table>
| TZW: DVGW-Water Technology Centre
Dr. Nicole Zumbülte | » Coordination and public relations
» Analytics using Raman microspectroscopy |
| Osnabrück University,
Institute of Environmental Systems Research
Dr. Jörg Klasmeier | » Weathering and crushing tests
» Modelling and balancing |
| University of Augsburg, Institute of Geography
Prof. Dr. Peter Fiener | » Microplastics in agricultural soils
» Field tests and small to medium scale modelling of the transport of microplastics via soil erosion |
| German Federal Institute of Hydrology (BfG)
Prof. Dr. Thomas Ternes | » Experiments and modelling on soil, erosion, transport, and agriculture
» Analytics using pyrolysis gas chromatography coupled to mass spectrometry, process understanding of water/soil/air |
| Cologne Technical University, STEPs
Prof. Dr. Astrid Rehorek | » Landfill leachate |
| Bavarian State Office for the Environment
Dr. Korbinian Freier | » Identification of entry points/sources, analytics using FT-IR spectroscopy |
| BKV GmbH
Stephanie Cieplik | » Modelling
» Consultation of practitioners |
PLAWES

Microplastic Contamination in the Weser-Wadden Sea – National Park Model System: an Ecosystem-Wide Approach

Coordinators
Prof. Dr. Christian Laforsch
University of Bayreuth
Chair of Animal Ecology I / UBT
Universitätsstraße 30
95447 Bayreuth
Phone: +49 921 / 55-2651
e-mail: christian.laforsch@uni-bayreuth.de

Dr. Gunnar Gerdts
Alfred Wegener Institute
Helmholtz Centre for Polar and Marine Research (AWI)
Kurpromenade
27498 Helgoland
Phone: +49 4725 / 819-3245
e-mail: gunnar.gerdts@awi.de

Partner institutions
» Coast Research Centre at the Lower Saxony State Enterprise for Water Management, Coastal Protection and Nature Conservation / NLWKN
» Jülich Research Centre / FZJ
» Goethe University Frankfurt / GU
» Johann Heinrich von Thünen Institute - Federal Research Institute for Rural Areas, Forestry and Fisheries / TI-LR
» Carl von Ossietzky University of Oldenburg, Institute of Chemistry and Biology of the Sea / UOld

Website
www.bayceer.uni-bayreuth.de/PLAWES/en

Short description
In PLAWES, the modelling system of the German national park Weser-Wadden Sea is the first large European river basin that is investigated in detail regarding its microplastic pollution to. PLAWES will conduct a pioneering study of the microplastic contamination from the headwaters to the North Sea [northern Atlantic Ocean] that comprises an interdisciplinary and integrated ecosystem approach and accounts for various point sources [wastewater treatment plants, separation systems] and diffuse sources [drainage, atmosphere] of pollution. The results are integrated into a model for identifying primary transport mechanisms and accumulation zones. The research will investigate the effects of microplastics on ecosystems in the Weser-Wadden Sea system by analysing the interaction of microplastic with pathogens in biofilm and aquatic invertebrates. Outcomes of this particularly ecologically relevant aspects will be used to estimate the environmental risk of microplastics for the model system, and subsequently make it transferable to other systems. In addition, the results of the analysis will become part of new teaching materials in order to provide a knowledge platform for teachers, students, and parents across Europe. PLAWES will generate unique data about the effects of microplastics on a large European river basin and its environment. This will be significant not only for policymakers and stakeholders, but also as a fundament for science-based solutions to address the microplastics problem.
Main areas of work
» Microplastics in the Weser-Wadden Sea
» Model-based balancing of diffuse and point sources of microplastic entries
» Interaction of microplastics with pathogens and biota
» Training measures to raise awareness of plastic waste

Work packages

WP 0
Management, communication and dissemination

Contact person
Prof. Dr. Christian Laforsch, University of Bayreuth, Universitätstraße 30, 95447 Bayreuth, e-mail: christian.laforsch@uni-bayreuth.de

Project partners
AWI

Short description
WP 0 ensures the targeted and efficient support of the consortium with regard to project management, communication and dissemination. WP 0 coordinates both the public relations work and the exploitation of the results achieved. WP 0 continues to coordinate the cooperation of all project partners and is therefore in close contact with all project partners. WP 0 coordinates the harmonisation with the joint research project MicroCatch_Balt with regard to sampling and processing, modelling, public relations, and data storage as well as communication with the other projects.

WP 1
Microplastics in the Weser-Wadden Sea model system

Contact person
Dr. Gunnar Gerdts, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Kurpromenade, 27498 Helgoland, e-mail: gunnar.gerdts@awi.de

Project partners
UBT, UOld

Short description
The aim of WP 1 is to investigate the entire Weser river system into coastal waters with regard to microplastic pollution. The final determination of the exact sampling points is carried out taking into account the real data required for RAUMIS-mGROWA-MePhos and “Tidal Model” [WP 3]. The entire Weser including the Lower Weser and the Wadden Sea will be investigated with regard to exposure to microplastic. Two campaigns are planned at different seasons with different water conditions on the Weser.

WP 2
Entry points – point sources and diffuse entry

Contact person
Prof. Dr. Andreas Held, University of Bayreuth, BayCEER; second affiliation: Technical University of Berlin, Department of Environmental Chemistry and Air Pollution Control, Straße des 17. Juni 135, 10623 Berlin, e-mail: held@tu-berlin.de

Project partners
AWI
Short description
The aim of WP 2 is an exemplary consideration of the input paths for microplastics by investigation of important point sources such as wastewater treatment plants and separation water sewer systems as well as the diffuse input from drains and atmosphere. For this purpose, selected sampling points in the Weser river basin are characterised taking into account different landscape areas and land use types. The focus is on quantifying the entry points of microplastics. Sampling is synchronised with the campaigns at the Weser.

WP 3
Model-based accounting of diffuse and point-shaped MP entries

Contact person
Prof. Dr. Frank Wendland, Jülich Research Centre IBG-3, Wilhelm-Johnen-Straße, 52428 Jülich, e-mail: f.wendland@fz-juelich.de

Project partners
TI, NLWKN

Short description
The aim is a spatially resolved quantification of the microplastic emissions from diffuse and point sources and the identification of spatial load centres and accumulation zones within the river basin and estuary. The microplastic entries are modelled from different types of diffuse entry points and point sources. The work is based on the models mGROWA, MEPhos, RAUMIS, as well as a transport modelling considering the estuarine hydro- and sediment dynamics. Within the framework of the project, the model chain will be improved in a targeted manner according to microplastic entry modelling in the inland and the further distribution of the microplastics in the lower reaches, estuary and apron.

WP 4
Interaction of microplastic with pathogens und biota

Prof. Dr. Jörg Oehlmann, Goethe University Frankfurt, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, e-mail: oehlmann@bio.uni-frankfurt.de

Project partners
AWI, UBT, UOld

Short description
In WP 4, the ecosystem effects of microplastic on the Weser-Wadden Sea model system are described on the basis of the two ecologically relevant aspects “Interaction with pathogens and antimicrobial resistance” and “Interaction with aquatic invertebrates”.

Interaction with pathogens and antimicrobial resistance: Since biofilms are sites of increased genetic exchange and increased antimicrobial resistance occurs below wastewater treatment plants, plastics could not only contribute to the dispersion of pathogenic organisms, but also of resistance genes. The consequences of such a transfer are currently unknown. AWI will therefore use molecular microbial source tracking techniques (DNA/RNA arrays for the detection of pathogenic bacteria, viruses, protozoa and virulence/resistance genes) to investigate plastic samples from the Weser region.

Interaction with aquatic invertebrates: In order to generate exposure data, different mollusk species are applied in situ in the Weser, the tidal area and the Wadden Sea. Absorbed microplastic is examined in the digestive tract and in tissue samples and confirmed in parallel by pyrolysis-GC-MS and spectroscopic methods. Historical mussel samples (since 1986) from the Federal Environmental Specimen Bank (UBA) are examined using pyrolysis-GC-MS. The chronic toxicity of microplastic is characterised in laboratory experiments with mussels and worms. Different polymers are conditioned in situ and toxicologically characterised in chronic exposure experiments.
WP 5
Training measures to raise awareness of plastic waste

Contact person
Prof. Dr. Franz X. Bogner, University of Bayreuth, Didactics of Biology, Universitätsstraße 30, 95447 Bayreuth, e-mail: franz.bogner@uni-bayreuth.de

Project partners
AWI, UOld

<table>
<thead>
<tr>
<th>Project partners</th>
<th>Main areas of work</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Bayreuth
Prof. Dr. Christian Laftorsch</td>
<td>» Project coordination, management and communication
 » Sampling, processing, analysis
 » Toxicity tests
 » Plastic input via the atmosphere
 » Innovative teaching materials, dissemination and multiplication via teaching/learning portal, development of internet portal</td>
</tr>
<tr>
<td>Alfred Wegener Institute
Dr. Gunnar Gerdts</td>
<td>» Project coordination
 » Sampling, processing, analysis
 » Pathogens and antimicrobial resistance
 » Learning sequences for the education sector, OPENSEA school lab</td>
</tr>
<tr>
<td>Carl von Ossietzky University of Oldenburg
Dr. Barbara Scholz-Böttcher</td>
<td>» Analytics
 » Sampling/processing
 » Teaching materials for educational actors</td>
</tr>
<tr>
<td>Jülich Research Centre
Prof. Dr. Frank Wendland</td>
<td>» Modelling inland/catchment area</td>
</tr>
<tr>
<td>Johann Heinrich von Thünen Institute
Dipl.-Ing. Peter Kreins</td>
<td>» Modelling of agricultural sources of input</td>
</tr>
<tr>
<td>Coast Research Centre of the Lower Saxony State Agency for Water Management, Coastal and Nature Conservation
Dr. Andreas Wurpts</td>
<td>» Modelling for the estuary area/marine system</td>
</tr>
<tr>
<td>Goethe University Frankfurt
Prof. Dr. Jörg Oehlmann</td>
<td>» In-situ exposure, effect studies
 » Risk evaluation</td>
</tr>
</tbody>
</table>

Short description
In addition to the ethical assessment skills of students, WP 5 will incorporate existing individual environmental knowledge. Innovative teaching materials with a sound reference to everyday life are evaluated for a holistic understanding regarding the burden of plastics in the model system and disseminated via an Internet teaching/learning portal. Within the work package, UBT provides a handbook for teachers and “public relations workers”.
MicroCatch_Balt

Investigation of Sinks and Sources of Microplastics from a Typical Catchment Area to the Open Baltic Sea

Coordinator
PD Dr. habil. Matthias Labrenz
Leibniz Institute for Baltic Sea Research Warnemünde / IOW,
Environmental Microbiology
Seestraße 15
18119 Rostock
Phone: +49 381/5197378
e-mail: matthias.labrenz@io-warnemuende.de

Partner institutions
» Leibniz Institute of Polymer Research Dresden / IPF
» Jülich Research Centre, Institute for Bio- and Geosciences / FZJ-IBG
» Johann Heinrich von Thünen Institute - Federal Research Institute for Rural Areas, Forestry and Fisheries / TI-LR
» Fraunhofer Institute for Computer Graphics Research IGD Rostock / FhIGD

Website
www.io-warnemuende.de/microcatch-home.html

Short description
This project determines sources and sinks of microplastic in the Warnow river basin, as well as relevant dissemination processes on its way to the open Baltic Sea. Separate models will be linked so that the resulting model covers the entire river basin including estuary and coastal waters. The linked models serve to identify hotspot areas of microplastic entry and to estimate the effects of microplastic reduction measures in parts of the river basin. By converting the models into a hands-on multitouch table, project participants can make interactive, creative learning modules that can be presented in the form of a traveling exhibition in communities around the German Baltic coast from Stralsund to Flensburg. Further, MicroCatch_Balt includes the examination of anti-fouling paint and extreme weather events as sources and higher organisms as sinks. Based on this, MicroCatch_Balt will cover the most important aspects of microplastic contamination of limnic to marine systems in northern Germany, thereby offering interest groups the expertise with which to develop future monitoring and strategies for reduction.

Main areas of work
» Sampling in the Warnow river basin and estuary, extraction and identification of microplastics
» Modelling of microplastic input into the Warnow system of diffuse and point sources
» Development of two multi-media modules for a multi-touch table and organisation of a traveling exhibition
Work packages

WP 1
Subheading
Sampling of microplastic from the environment

Contact person
PD Dr. habil. Matthias Labrenz, Leibniz Institute for Baltic Sea Research, Environmental Microbiology, Seestraße 15, 18119 Rostock, e-mail: matthias.labrenz@io-warnemuende.de

Project partners
IPF

Short description
In WP 1, environmental samples (water, sediment, soil, benthic and pelagic higher organisms) are collected, processed and identified in the Warnow area. Of particular interest are potential sources such as wastewater treatment plants / sewage separation, drainage ditches, erosion areas, industrially influenced areas as well as extreme events like Hanse Sail, New Year’s Eve, heavy rain and storm events. Potential sinks, including higher organisms (mussels, worms, fish), beaches and sediments are also sampled. In all samples, the microplastic particles are identified and quantified using spectroscopic methods.

WP 2
Subheading
Modelling of the Warnow estuary and the catchment area

Contact person
Dipl.-Ing.agr. Peter Kreins, Johann Heinrich von Thünen Institute - Federal Research Institute for Rural Areas, Forestry and Fisheries, Bundesallee 50, 38116 Braunschweig, e-mail: peter.kreins@thuenen.de

Project partners
FZJ, IOW

Short description
By adapting and combining different regional models, spatially high-resolution modelling of landside diffuse and point source of microplastic emissions into the river basin of the Warnow will take place. In this way, on the one hand the hotspots of pollution in the Warnow river area are identified and on the other hand the entire landside microplastic entries into coastal waters are quantified.

WP 3
Subheading
Microplastics Touring Exhibition

Contact person
Dr. Barbara Hentzsch, Leibniz Institute for Baltic Sea Research Warnemünde, Scientific Management and Communication, Seestraße 15, 18119 Rostock, e-mail: barbara.hentzsch@io-warnemuende.de

Project partners
FhIGD

Short description
In WP 3 a traveling exhibition with an interactive multimedia learning module will be developed, which presents the project results in the form of animations. The traveling exhibition will be shown in Stralsund, Rostock, Hamburg, Kiel, Eckernförde and Flensburg. The respective exhibition openings will be accompanied by plenary discussions with representatives of the local environmental authorities and scientists.
WP 4
Project management

Contact person
Franziska Klaeger, Leibniz Institute for Baltic Sea Research, Environmental Microbiology, Seestraße 15, 18119 Rostock, +49 381 5197249, e-mail: franziska.klaeger@io-arnemuende.de

Short description
WP 4 covers project management and ensures efficient and productive execution of the project. The tasks of WP 4 include coordination with the other “Plastics in the Environment” projects PLAWES, PLASTRAT and the BONUS project MICROPOLL, as well as monitoring finances and work results, organising regular project meetings, disseminating project results to the public, and supporting the project manager with regard to internal and external scientific communication.

Project partners

<table>
<thead>
<tr>
<th>Leibniz Institute for Baltic Sea Research Warnemünde</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD Dr. habil. Matthias Labrenz</td>
</tr>
<tr>
<td>Prof. Dr. habil. Gerald Schernewski</td>
</tr>
<tr>
<td>Dr. Barbara Hentzsch</td>
</tr>
</tbody>
</table>

- **Main areas of work**
 - Microplastic in the Baltic Sea catchment area: sampling and processing
 - Estuary modeling
 - Public participation, traveling exhibition

<table>
<thead>
<tr>
<th>Leibniz Institute of Polymer Research Dresden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Dieter Fischer</td>
</tr>
</tbody>
</table>

- Identification and quantification of microplastic <5 mm in all samples
- Automation of particle recognition, measurement and identification via databases

<table>
<thead>
<tr>
<th>Johann Heinrich von Thünen Institute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dipl.-Ing.agr. Peter Kreins</td>
</tr>
</tbody>
</table>

- Development of a model to estimate the microplastic emissions from agricultural land in the Warnow river basin

<table>
<thead>
<tr>
<th>Jülich Research Centre, Institute for Bio- and Geosciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Frank Wendland</td>
</tr>
</tbody>
</table>

- Model-based determination of microplastic emission or entries into the river system of the Warnow from diffuse and point sources

<table>
<thead>
<tr>
<th>Fraunhofer Institute for Computer Graphics Rostock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr.-Ing. Uwe Freiherr von Lukas</td>
</tr>
</tbody>
</table>

- Interactive visualisation of microplastic in the catchment area of the Baltic Sea
Short description

PlastikNet accompanies the 18 projects under the BMBF research focus by facilitating networking among them through conferences and issue-specific workshops. It supports the synthesis of results across the various projects and, through its knowledge transfer activities, increases their societal and political impact.

A steering committee, consisting of the coordinators of the 18 research projects as well as client representatives and the Project Management Agency Karlsruhe, was created as a forum for exchange among the institutions involved. It serves to prepare and coordinate the synthesis of results as well as overall knowledge transfer.

In order to ensure effective long-term dissemination of the results and findings of these projects, PlastikNet will oversee project weeks at schools, university seminars, traveling exhibitions and advanced training for specialists.

The public relations work of the overall research programme is also carried out via PlastikNet, i.e. when a corporate design is developed, PlastikNet creates a website as well as informational material and serves the common social media channels.

Main areas of work

» Exchange of knowledge and networking of joint research projects
» Synthesis of cross-project results from the joint research projects through synthesis papers and special issues in scientific journals
» Development of recommendations for action
» Public relations
» Transfer into educational concepts and strategies

Work packages

WP 1

Coordination and topic-specific networking of joint research projects

Short description

WP 1 serves to coordinate the content of the projects among themselves. To this end, a steering committee for the research priority will be established and coordinated by Ecologic Institute. There will be an annual networking conference and usually two thematic cluster workshops, which will primarily serve to structure the exchange processes and synthesis.
WP 2
Public relations

Short description
The public relations work will compile, summarise, make available and disseminate information on the research focus. In the first project phase, a corporate design is developed, a website created and social media channels created and established. These instruments will later be used to disseminate project results to specific target groups.

WP 3
Preparation and synthesis of research results

Short description
In WP 3, cross-project synergy potentials between the various joint research projects and their findings are identified and made usable as a synthesis of the research results by processing them. On the one hand, the synthesis will develop written products for stakeholders from science and practice, e.g. a joint documentation of results in the form of thematic brochures or policy papers (e.g. on future research needs). On the other hand, the research results are also prepared for societal transfer in dissemination materials such as short videos, traveling exhibitions, an international conference and formats for education in schools, companies, universities and professional associations.

WP 4
Participation in scientific conferences, congresses and trade exhibitions

Short description
An essential goal of the accompanying scientific research is to make the synthesis of the various projects better known, also in the scientific landscape. To this end, the Ecologic Institute staff actively participates in two scientific conferences per year. To inform the professional public, the dissemination products are presented at various trade fairs and congresses in Germany and abroad on a PlastikNet exhibition stand. Posters and videos will be shown on the stands, informational material will be distributed and questions will be answered to the interested expert audience. There are plans to participate in two specialist congresses per year.

WP 5
Transfer into educational concepts and strategies

Short description
With a view to the long-term and society-wide transfer of the findings from the joint research projects, the aim of this work package is to prepare relevant results and findings for application in school education, higher education, as well as in vocational education and training and to identify possible channels through which the prepared findings can be incorporated into educational concepts or strategies.
Contact details of the project partners

RAU

Technical University of Berlin, Faculty VI – Planning Building Environment, Institute of Civil Engineering, Chair of Urban Water Management
Gustav-Meyer-Allee 25
13355 Berlin
Prof. Dr.-Ing. Matthias Barjenbruch
matthias.barjenbruch@tu-berlin.de
Daniel Venghaus
daniel.venghaus@tu-berlin.de

WESSLING GmbH
Oststr. 6
48341 Altenberge
Dr. Jens Reiber
jens.reiber@wessling.de

Berliner Stadtreinigung
Vorstandsbüro Energie, Umwelt, Innovationen
Ringbahnstraße 96
12103 Berlin
Dipl.-Ing. – [FH] Björn Weiβ
joern.Weiss@BSR.de

Berlin Wasserbetriebe
Forschung und Entwicklung
Neue Jüdenstraße 1
10179 Berlin
Dipl.-Ing. Regina Gniß
regina.gniß@bwb.de

ADAC e.V.
Ressort Verkehr – Verkehrspolitik (VPO)
Verkehr und Umwelt
Hansastraße 19
80686 München
Dipl.-Met. Michael Niedermeier
michael.niedermeier@adac.de

VW Konzernforschung / Forschung Elektronik & Fahrzeug / Fahrzeugtechnik
Brieffach 1777
38436 Wolfsburg
Dr. Felix Kalmeyer
felix.kalmeyer@volkswagen.de

ORI Abwassertechnik GmbH & Co. KG
Bollacken 2
32479 Hille
Jörg Bodecker
j.b@origmbH.de

TextileMission

Federal Association of the German Sporting Goods Industry e.V.
Adenauerallee 134
53113 Bonn
Nicole Espey
nicole.espey@bsi-sport.de
Alexander Kolberg
alexander.kolberg@bsi-sport.de

Niederrhein University of Applied Sciences, Faculty of Textile and Clothing Technology
Research Institute for Textile and Clothing
Reinarzstr. 49
47805 Krefeld
Prof. Dr. Maike Rabe
maike.rabe@hs-niederrhein.de
Prof. Dipl.-Des. Ellen Bendt
ellen.bendt@hs-niederrhein.de

VAUDE Sport GmbH & CO. KG
VAUDE Straße 2
88069 Tettnang
Hilke Anna Patzwall
hilke.patzwall@vaude.com

Technical University of Dresden, Institute of Water Chemistry, Chair of Hydrochemistry and Water Technology
01062 Dresden
Prof. Dr. Stefan Stolte
stefan.stolte@tu-dresden.de

WWF Germany
Kaiserstraße 70
60329 Frankfurt
Dr. Bernhard Bauske
bernhard.bauske@wwf.de
ENSURE

adidas AG
Adi-Dassler-Straße 1-2
91074 Herzogenaurach
Philipp Meister
philipp.meister@adidas-group.com

Henkel AG & Co. KG aA
Henkelstraße 67
40589 Düsseldorf
Christina Röleke
christina.roeleke@henkel.com

Miele & Cie. KG
Carl-Miele-Straße 29
33332 Gütersloh
Dr. Karsten Gayk
karsten.gayk@miele.de

Polartec LLC
Bahnhofstraße 12
54518 Binsfeld
Senel Celik
CelikS@polartec.com

University of Stuttgart, Institute of Plastics Technology
Pfaffenwaldring 32
70569 Stuttgart
Prof. Dr. habil. Marc Kreutzbruck
marc.kreutzbruck@ikt.uni-stuttgart.de
Svenja Murillo Castellón
svenja.murillo-castellon@ikt.uni-stuttgart.de

Federal Environmental Agency
Corrensplatz 1
14195 Berlin
Dr. Claus Gerhard Bannick
claus-gerhard.bannick@uba.de
Stefan Meinecke
stefan.meinecke@uba.de
Ralf Schmidt
ralf.schmidt@uba.de

Federal Institute for Materials Research and Testing
Unter den Eichen 87
12205 Berlin
Dr. Ulrike Braun
ulrike.braun@bam.de
PD Dr. Hans Jörg Kunte
hans-joerg.kunte@bam.de

Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences
Telegrafenberg
14473 Potsdam
Prof. Dr. Dirk Wagner
dirk.wagner@gfz-potsdam.de
Dr. Kai Mangelsdorf
kama@gfz-potsdam.de
Dr. Mathias Bochow
mathias.bochow@gfz-potsdam.de

Technical University of Berlin, Chair of Soil Sciences
Ernst-Reuter-Platz 1
10587 Berlin
Prof. Dr. Martin Kaufenjohann
martin.kaufenjohann@tu-berlin.de
Frederick Büks
frederick.bueks@tu-berlin.de

Osnabrück University, Institute of Environmental Systems Research
Barbarastraße 12
49076 Osnabrück
Dr. Jörg Klasmeier
jklasmei@uos.de

Institute for Advanced Sustainability Studies
Berliner Straße 130
14467 Potsdam
Prof. Dr. Ortwin Renn
ortwin.renn@iass-potsdam.de
Dr. Katharina Beyerl
katharina.beyerl@iass-potsdam.de

BASF SE
BASF SE ZOA/EI
67056 Ludwigshafen
Victoria Wessolowski
victoria.wessolowski@basf.com

Herrmann Ultraschalltechnik GmbH & Co. KG
Descostaße 3-9
76307 Karlsbad
Christian Reitze
christian.reitze@herrmannultraschall.com
Berliner Stadtreinigungs- betriebe
Ringbahnstraße 96
12103 Berlin
Frieder Söling
frieder.soeling@bsr.de

Berliner Wasserbetriebe
Neue Jüdenstraße 1
10179 Berlin
Regina Gnírsl
regina.gnirss@bwb.de

Hamm-Lippstadt University of Applied Sciences
Marker Allee 76-78
59063 Hamm
Prof. Dr. Sabine Fuchs
sabine.fuchs@hslh.de

VerPlaPoS

Stadt Straubing
Theresienplatz 2
94315 Straubing
Dr. Thomas Decker
thomas.decker@straubing.de

Weihenstephan-Triesdorf
University of Applied Sciences, Department of Marketing and Management of Renewable Resources
Petersgasse 18
94315 Straubing
Prof. Dr. Klaus Menrad
klaus.menrad@hswt.de

Philipps-University Marburg, Department of Bioinformatics
Biegenstrasse 10
35037 Marburg
Prof. Dr. Dominik Heider
dominik.heider@uni-marburg.de

Ludwig Stocker Hofpfisterei GmbH
Kreittmaysrstrasse 5
80335 München
Jochem Holterbosch
j.holterbosch@hofpfisterei.de

PlastikBudget

Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT
Osterfelder Straße 3
46047 Oberhausen
Jürgen Bertling
juergen.bertling@umsicht.fraunhofer.de
Dr. Daniel Maga
Nils Thonemann

Institute for Advanced Study in the Humanities (KWI)
Goethestraße 31
45128 Essen
Dr. Steven Engler
steven.engler@kwi-nrw.de
Stefan Schweiger
PLASTRAT

Bundeswehr University Munich, Chair of Sanitary Engineering and Waste Management
Werner-Heisenberg-Weg 39 85577 Neubiberg
Prof. Dr.-Ing. Christian Schaum christian.schaum@unibw.de
apl. Prof. Dr.-Ing. Steffen Krause steffen.krause@unibw.de
Sophia Badenberg
Annett Mundani

Goethe University Frankfurt, Department of Aquatic Ecotoxicology
Max-von-Laue-Straße 13 60438 Frankfurt
Prof. Dr. Jörg Oehlmann oehlmann@bio.uni-frankfurt.de
Dr. Ulrike Schulte-Oehlmann
Kristina Klein

ISOE – Institute for Social-Ecological Research
Hamburger Allee 45 60486 Frankfurt
Dr. Immanuel Stieß stieiss@isoe.de
Dr. Carolin Völker
Heide Kerber
Paul Raschewski

IWW Rheinisch-Westfälisches Institute for Water Research gGmbH
Moritzstraße 26 45476 Mülheim an der Ruhr
Dr. Anne Simon a.simon@iww-online.de
Kristina Wencki
Nina Sips

German Federal Institute of Hydrology (BfG)
Am Mainzer Tor 1 56068 Koblenz
Prof. Dr. Thomas Ternes ternes@bafg.de
Dr. Georg Dierkes
Tim Lauschke

aquadrat ingenieure GmbH
Raiffeisenstraße 20 64347 Griesheim
Dr.-Ing. Tobias Günkel-Lange t.guenkel-lange@a2i.de

Technical University of Darmstadt, Institute IWAR
Franziska-Braun-Straße 7 64287 Darmstadt
Prof. Dr. Liselotte Schebek lschebek@iwar.tu-darmstadt.de
Dr. Koeri Sakaguchi-Söder
Michael Gottschling

inge GmbH
Flurstraße 27 86926 Greifenberg
Christian Staaks cstaaks@inge.de
Christian Pfister

Leibniz Institute for Polymer Research Dresden
Hohe Straße 6 01069 Dresden
Dr. Dieter Fischer fisch@ipfdd.de
Franziska Fischer

Leibniz Institute for Baltic Sea Research Warnemünde
Seestraße 15 18119 Rostock
PD Dr. Matthias Labrenz matthias.labrenz@io-warnemuende.de
Dr. Juliana Assunção Ivar do Sul
Federal Institute for Materials Research and Testing, Division 5.3 Mechanics of Polymers

Unter den Eichen 87
12205 Berlin

Dr. Ulrike Braun
ulrike.braun@bam.de

Marion Krämer
Dr. Andrea Paul
Lukas Wander

Federal Environmental Agency
Corrensplatz 1
14195 Berlin

Dr. Claus Gerhard Bannick
claus-gerhard.bannick@uba.de

Ralf Schmidt
ralf.schmidt@uba.de

Dr. Anne Barthel
Stefan Meinecke

Technical University of Chemnitz, Institute for Materials Handling and Plastics
Reichenhainer Str. 70
09126 Chemnitz

Prof. Dr.-Ing. Michael Gehde
michael.gehde@mb.tu-chemnitz.de

Mirko Albrecht
Eric Brueckner

Fraunhofer Centre for Silicon Photovoltaics CSP
Otto-Eißfeldt-Straße 12
06120 Halle (Saale)

Dr. Christian Hagendorf
christian.hagendorf@csp.fraunhofer.de

Technical University of Kaiserslautern, Institute of Water – Infrastructure – Resources
Paul-Ehrlich-Straße 14
67663 Kaiserslautern

Prof. Dr.-Ing. Heidrun Steinmetz
heidrun.steinmetz@bauing.uni-kl.de

Prof. Dr.-Ing. Theo G. Schmitt
Dipl.-Ing. Christian Scheid

Fritz Haber Institute of the Max Planck Society, Department of Inorganic Chemistry
Faradayweg 4-6
14195 Berlin

Dr. Thomas Lunkenbein
lunkenbein@fhi-berlin.mpg.de

Prof. Robert Schlögl

Technical University of Munich, Associate Professorship of Hydromechanics
Arcisstraße 21
80333 München

Prof. Dr.-Ing. Michael Manhart
m.manhart@bv.tum.de

Technical University of Berlin, Department of Environmental Technology, Specialty Area of Water Quality Engineering
Straße des 17. Juni 135, 10623 Berlin

Dr.-Ing. Aki Sebastian Ruhl
aki.s.ruhl@tu-berlin.de

Prof. Dr. Martin Jekel

SmartMembranes GmbH
Heinrich-Damerow-Str. 4
06120 Halle (Saale)

Monika Lelonek
monika.lelonek@smartmembranes.de

Kreuzinger und Manhart Turbulenz GmbH
Kirchenstraße 34
81675 München

Dr.-Ing. Florian Schwertfirm
f.schwertfirm@km-turbulenz.de

Umwelt-Geräte-Technik GmbH
Eberswalder Straße 58
15374 Müncheberg

Bernd Fürst
bernd.fuerst@ugt-online.de

Dr. Marco Reiche

PlasticsEurope Deutschland e.V.
Mainzer Landstrasse 55
60329 Frankfurt/Main

Dr. Ingo Sartorius
ingo.sartorius@plasticseurope.org

Zentralverband Elektrotechnik- und Elektronikindustrie e.V.
Lyoner Straße 9
60528 Frankfurt/Main

Werner Scholz
scholz@ZVEI.Org

GKD – Gebr. Kufferath AG
Metallweberstrasse 46
52353 Düren

Markus Knefel
markus.knefel@gkd.de

Westfalia Separator Group GmbH
Werner-Habig-Straße 1
59302 Oelde

Dr. Stefan Pecoroni
stefan.pecoroni@gea.com
Technical University of Munich, Chair of Urban Water Systems Engineering
Am Coulombwall 3
85748 Garching
Prof. Dr.-Ing. Jörg E. Drewes
drewes@tum.de
PD Dr. Thomas Letzel
PD Dr. Johanna Großmann

Technical University of Munich, Chair of Aquatic Systems Biology
Mühlenweg 22
85354 Freising
Prof. Dr. Jürgen Geist
geist@tum.de
Dr. Sebastian Beggel
sebastian.beggel@tum.de

Technical University of Munich, Assistant Professorship of Science and Technology Policy
Augustenstr. 46
80333 Munich
Prof. Dr. Ruth Müller
ruth.mueller@tum.de
Sarah Schönbauer

Helmholtz Centre Munich, Institute of Groundwater Ecology
Ingolstädtener Landstr. 1
85764 Neuherberg
PD Dr. Christian Griebler
griebler@helmholtzmuenchen.de
Dr. Yuxiang Zhou

Bavarian State Office for the Environment
Demollstr. 31
82407 Wielenbach
Dr. Korbinian Freier
korbinian.freier@lfu.bayern.de

Federal Environmental Agency
Corrensplatz 1
14195 Berlin
Dr. Claus Gerhard Bannick
claus-gerhard.bannick@uba.de
Nathan Obermaier

Institute of Energy and Environmental Technology e. V. (IUTA)
Bliesheimer Str. 58-60
47229 Duisburg
Dr. Carmen Nickel
nickel@iuta.de
Dr. Jochen Türk
tuerk@iuta.de
Matin Funck
Bryan Hellack

Postnova Analytics GmbH
Max-Planck-Str. 14
86899 Landsberg
Dr. Florian Meier
florian.meier@postnova.com
Vanessa Sogne

BS-Partikel GmbH
Nestléstr. 41
55120 Mainz
Dr. Kyriakos Eslahian
eslahian@bs-partikel.de
Cornelia Hunger
ResolVe
INEOS Styrolution Group GmbH
Mainzer Landstraße 50
60325 Frankfurt am Main
Dr. Hannes Kerschbaumer
hannes.kerschbaumer@styrolution.com
Dr. Bianca Benecke
Dr. Tobias Schulz

INEOS Köln GmbH
Alte Straße 201
50769 Köln
Dr. Ralf Gesthuisen
ralf.gesthuisen@ineos.com
Julien Nottbohm

RWTH Aachen University,
Institute of Plastics Processing
Seffenter Weg 201
52074 Aachen
Maximilian Adamy
maximilian.adamy@ikv.rwth-aachen.de
Dr.-Ing. Nafi Yesildag

RWTH Aachen University,
Department of Processing and Recycling
Wüllnerstraße 2
52056 Aachen
Prof. Dr. Thomas Pretz
pretz@ifa.rwth-aachen.de
Dr.-Ing. Alexander Feil
Laura Hollerbach
Nicolas Go

Neue Materialien Bayreuth GmbH
Gottlieb-Keim-Straße 60
95448 Bayreuth
Prof. Dr. Hans-Werner Schmidt
hans-werner.schmidt@uni-bayreuth.de
Dr. Tristan Kolb, Andreas Schedl

solvoPET
RITTEC Umwelttechnik GmbH
Feldstraße 29
21335 Lüneburg
Carsten Eichert
eichert@rtcg-kg.de
Lars Leipert

Technical University of Braunschweig, Institute for Chemical and Thermal Process Engineering
Langer Kamp 7
38106 Braunschweig
Prof. Dr.-Ing. Stephan Scholl
s.scholl@tu-braunschweig.de
Esther Laura Peschel

Technical University of Braunschweig, Institute of Machine Tools and Production Technology
Langer Kamp 19B
38106 Braunschweig
Prof. Dr.-Ing. Christoph Herrmann
c.herrmann@tubraunschweig.de
Dr. Stefan Böhme
Selin Erkisi-Arici

Fraunhofer Institute for Chemical Technology, Department of Environmental Engineering
Joseph-von-Fraunhofer-Str. 7
76327 Pfimntal
Dipl.-Ing. Jens Forberger
jens.forberger@ict.fraunhofer.de
Ansilla Bayha

Reclay Materials GmbH
Im Zollhafen 2-4
50678 Köln
Mark Steiner
m.steiner@reclay-group.com

SCHILLER Apparatebau GmbH
Laubenhof 15a
45326 Essen
Andreas Schröder
a.schroeder@schiillerapparatebau.com
Wolfgang Dradten

VTU Engineering Deutschland GmbH
Frankfurter Str. 287
38122 Braunschweig
Thorsten Harnaut
thorsten.harnaut@vtu.com
MaReK

Hochschule Pforzheim
University, Institute of
Industrial Ecology
Tiefenbronner Str. 65
75175 Pforzheim
Prof. Dr.-Ing. Claus Lang-Koetz
claus.lang-koetz@hs-pforzheim.de
Prof. Dr.-Ing. Jörg Woidasky
joerg.woidasky@hs-pforzheim.de

Polysecure GmbH
Engesserstr. 4a
79108 Freiburg
Jochen Moesslein
jochen.moesslein@polysecure.eu
Dr. Martin Fahr

Der Grüne Punkt – Duales System Deutschland GmbH
Frankfurter Str. 720
51145 Köln (Porz)
Stefan Wiethoff
stefan.wiethoff@gruener-punkt.de

Werner & Mertz GmbH
Rheinallee 96
55120 Mainz
Immo Sander
isander@werner-mertz.com

Karlsruhe Institute of Technology
Hermann-von-Helmholtz-Platz 1,
Geb. 301, 76344 Eggenstein-Leopoldshafen
Prof. Dr. Bryce Richards
bryce.richards@kit.edu

KuWert

TECHNOLOG Services GmbH
Vorsetzen 50
20459 Hamburg
Christoph Rasewsky
christoph.rasewsky@tlg-services.biz
Berend Pruin

Hochschule Bremen – City University of Applied Sciences,
Institute for Energy, Recycling and Environmental Protection
Neustadtswall 30
28199 Bremen
Dr. Martin Wittmaier
wittmaier-office@hs-bremen.de
Dipl.-Geoökol. Sebastian Wolff

Nehlsen GmbH & Co. KG
Hüttenstr. 5
28237 Bremen
Dr. Sven Rausch
sven.rausch@nehlsen.com
REPLAWA

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Address</th>
<th>Contact Person</th>
<th>Email Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emscher Wassertechnik GmbH</td>
<td>Brunnenstraße 37</td>
<td>Prof. Dr.-Ing. Holger Scheer</td>
<td>scheer@ewlw.de</td>
</tr>
<tr>
<td></td>
<td>45128 Essen</td>
<td>Dipl.-Ing. Peter Wulf</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr.-Ing. Tim Fuhrmann</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr.-Ing. Ingo Urban</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical University of Berlin,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faculty VI - Planning Building</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environment, Institute of Civil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering, Chair of Urban</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Management</td>
<td>Gustav-Meyer-Allee 25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13355 Berlin</td>
<td>Prof. Dr.-Ing. Matthias Barjenbruch</td>
<td>matthias.barjenbruch@tu-berlin.de</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical University of Berlin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical University of Braunschweig, Institute of Sanitary and Environmental Engineering</td>
<td>Pockelsstr. 2 a</td>
<td>Dr.-Ing. Katrin Bauerfeld</td>
<td>k.bauerfeld@tu-braunschweig.de</td>
</tr>
<tr>
<td></td>
<td>38106 Braunschweig</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stefanie Meyer</td>
<td></td>
</tr>
<tr>
<td>Technical University of Braunschweig, Institute of Social Sciences, Chair of International Relations</td>
<td>Bienroder Weg 97</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>38106 Braunschweig</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anja P. Jakobi</td>
<td>a.jakobi@tu-braunschweig.de</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nordic Water GmbH</td>
<td>Hansemannstr. 41</td>
<td>Andreas Sack</td>
<td>asack@nordic-water.de</td>
</tr>
<tr>
<td></td>
<td>41468 Neuss</td>
<td>Hansjoerg Lenz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARTIN Membrane Systems AG</td>
<td>Friedrichstr. 95</td>
<td>Daniel Crawford</td>
<td>daniel-crawford@martin-membrane.com</td>
</tr>
<tr>
<td></td>
<td>10117 Berlin</td>
<td>Christian Roloff</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mecana Umwelttechnik GmbH</td>
<td>Industriestr. 39</td>
<td>Ulrich Grabbe</td>
<td>u.grabbe@mecana.ch</td>
</tr>
<tr>
<td></td>
<td>CH-8864 Reichenburg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lippeverband</td>
<td>Kronprinzenstraße 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>45128 Essen</td>
<td>Dr.-Ing. Issa Nafo</td>
<td>nafo.issa-ibrahim@eglv.de</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr.-Ing. Sven Lyko</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stadtentwässerung Braunschweig GmbH</td>
<td>Taubenstr. 7</td>
<td>Andreas Hartmann</td>
<td>andreas.hartmann@se-bs.de</td>
</tr>
<tr>
<td></td>
<td>38106 Braunschweig</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EmiStop</td>
<td>In den Leppsteinswiesen 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>64380 Rossdorf</td>
<td>Eva Gilbert</td>
<td>eva.gilbert@envirochemie.com</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical University of Darmstadt,</td>
<td>Institute IWAR, Department of Wastewater Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Franziska-Braun-Straße 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>64287 Darmstadt</td>
<td>Prof. Dr. Susanne Lackner</td>
<td>s.lackner@iwar.tu-darmstadt.de</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hojo Bitter</td>
<td>h.bitter@iwar.tu-darmstadt.de</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical University of Darmstadt,</td>
<td>Institute IWAR, Department of Wastewater Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Franziska-Braun-Straße 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>64287 Darmstadt</td>
<td>Prof. Dr. Ing. Markus Engelhart</td>
<td>m.engelhart@iwar.tu-darmstadt.de</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RheinMain University, Institute for Environmental and Process Engineering, Department of Wastewater Treatment</td>
<td>Am Brückweg 26</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>65428 Rüsselsheim</td>
<td>Prof. Dr. Jutta Kerpen</td>
<td>jutta.kerpen@hs-rm.de</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sebastian Wolff</td>
<td>sebastian.wolff@hs-rm.de</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inter3-Institute for Resource Management</td>
<td>Otto-Suhr-Allee 59, 10585 Berlin</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. Till Ansmann</td>
<td>ansmann@inter3.de</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dipl.-Ing. Wolf Raber</td>
<td>raber@inter3.de</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Anja Steglich</td>
<td>steglich@inter3.de</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS-Partikel GmbH</td>
<td>Nestléstr. 41</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>55120 Mainz</td>
<td>Dr. Kyriakos Eslahan</td>
<td>eslahian@BS-Partikel.de</td>
</tr>
</tbody>
</table>
MikroPlaTaS

Helmholtz-Centre for Environmental Research–UFZ
Brückstraße 3a
39114 Magdeburg
PD Dr. Katrin Wendt-Potthoff
katrin.wendt-potthoff@ufz.de
Dr. Thomas R. Neu

University of Münster, Institute of Landscape Ecology
Heisenbergstr. 2
48149 Münster
Dr. Friederike Gabel
gabelf@uni-muenster.de

University of Münster, Institute of Molecular Microbiology and Biotechnology
Corrensstr. 3
48149 Münster
Prof. Dr. Bodo Philipp
bodo.philipp@uni-muenster.de

University of Potsdam
Am Neuen Palais 10
14469 Potsdam
PD Dr. Guntram Weithoff
weithoff@uni-potsdam.de

Bielefeld University
Konsequenz 45
33615 Bielefeld
Prof. Dr. Walter Traunspurger
traunspurger@uni-bielefeld.de
Dr. Arne Hägerbäumer

Ecossa
Giselastraße 6
82319 Starnberg
Dr. Sebastian Höss
hoess@ecossa.de

Institute for Water Protection Mesocosm GmbH
Neu-Ulrichstein 5
35315 Homberg (Ohm)
Prof. Dr. Klaus Peter Ebke
ebke@mesocosm.de
Petra Stegger
Dr. Rabea Christmann

MicBin

TZW: DVGW Water Technology Centre, Analysis and Water Quality Department
Karlsruher Straße 84
76139 Karlsruhe
Dr. Nicole Zumbülte
nicole.zumbuelte@tzw.de

Osnabrück University, Institute of Environmental Systems Research
Barbarastr. 12
49078 Osnabrück
Dr. Jörg Klasmeier
jklasmei@uos.de

University of Augsburg, Institute of Geography
Alter Postweg 118
86159 Augsburg
Prof. Dr. Peter Fiener
fiener@geo.uni-augsburg.de

German Federal Institute of Hydrology (BfG)
Am Mainzer Tor 1
56068 Koblenz
Prof. Dr. Thomas Ternes
ternes@bafg.de
Dr. Georg Dierkes
diekers@bafg.de

Cologne Technical University, STEPs
CHEMPARK Leverkusen, Geb. E28, Kaiser-Wilhelm-Allee
51368 Leverkusen
Prof. Dr. Astrid Rehorek
astrid.rehorek@th-koeln.de
Bavarian State Office for the Environment
Demollstr. 31
82407 Wielenbach
Dr. Korbinian Freier
korbinian.freier@lfu.bayern.de

BKV GmbH
Mainzer Landstraße 55
60329 Frankfurt am Main
Stephanie Cieplik
stephanie.cieplik@bkv-gmbh.de

University of Bayreuth
Universitätsstr. 30
95447 Bayreuth
Prof. Dr. Christian Laforsch
christian.laforsch@uni-bayreuth.de
Prof. Dr. Andreas Held
held@tu-berlin.de
Prof. Dr. Franz X. Bogner
franz.bogner@uni-bayreuth.de

Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI)
Kurpromenade 201
27498 Helgoland
Dr. Gunnar Gerdz
gunnar.gerdts@awi.de
Dr. Antje Wichels
antje.wichels@awi.de

Carl von Ossietzky
University of Oldenburg
Ammerländer Heerstr. 114–118
26129 Oldenburg
Dr. Barbara Scholz-Böttcher
bsb@icbm.de
Dr. Thomas Badewien
thomas.badewien@uni-oldenburg.de
Prof. Dr. Corinna Hößle
corinna.hoessle@uni-oldenburg.de

Goethe University Frankfurt
Max-von-Laue-Str. 13
60438 Frankfurt am Main
Prof. Dr. Jörg Oehlmann
oehlmann@bio.uni-frankfurt.de
Prof. Dr. Martin Wagner
martin.wagner@ntnu.no

Jülich Research Centre
Wilhelm-Johnen-Straße
52428 Jülich
Prof. Dr. Frank Wendland
f.wendland@fz-juelich.de

Johann Heinrich von Thünen Institute - Federal Research Institute for Rural Areas, Forestry and Fisheries
Bundesallee 50
38116 Braunschweig
Dipl.-Ing. agr. Peter Kreins
peter.kreins@thuenen.de

Coast Research Centre of the Lower Saxony State Agency for Water Management, Coastal and Nature Conservation
An der Mühle 5
26548 Norderney
Dr. Andreas Wurpts
Andreas.Wurpts@nlwkn-ny.niedersachsen.de
MicroCatch_Balt

Leibniz Institute for Baltic Sea Research Warnemünde
Seestraße 15
18119 Rostock
PD Dr. habil. Matthias Labrenz
matthias.labrenz@io-warnemuende.de
Franziska Klæger
franziska.klaeger@io-warnemuende.de
Prof. Dr. habil. Gerald Schernewski
Dr. Barbara Hentzsch
Dr. Sven Hille
Alexander Tagg
Robin Lenz

Leibniz Institute of Polymer Research Dresden
Hohe Str. 6
01069 Dresden
Dr. Dieter Fischer
fisch@ipfdd.de
Franziska Fischer

Jülich Research Centre, Institute for Bio- and Geosciences
Wilhelm-Johnen-Straße 52425 Jülich
Prof. Dr. Frank Wendland
f.wendland@fz-juelich.de
Frank Herrmann

Johann Heinrich von Thünen Institute – Federal Research Institute for Rural Areas, Forestry and Fisheries
Bundesallee 50
38116 Braunschweig
Dipl.-Ing. agr. Peter Kreins
Peter.kreins@thuenen.de
Dr. Elke Brandes

Fraunhofer Institute for Computer Graphics Research IGD Rostock
Joachim-Jungius-Str. 11
18059 Rostock
Prof. Dr.-Ing. Uwe Freiherr von Lukas
uwe.von.lukas@igdr.fraunhofer.de
Sven Kluge
Dr. Stefan Gladisch

PlastikNet

Ecologic Institut
Pfalzburger Straße 43/44
10717 Berlin
Doris Knoblauch
Dr. Ulf Stein
plastiknet@ecologic.eu
Christine Lucha
Dr. Martin Hirschnitz-Garbers
Dr. Nico Stelljes
Katrina McGlade
Ina Krüger
Linda Mederake
Hannes Schritt